BRAIN DYSFUNCTION IN CRITICALLY ILL (SEPTIC) PATIENTS

Human hystopathology and animal models Pr Chrétien – Institut Pasteur

University of Versailles Raymond Poincaré Teaching Hospital Garches – France Institut Pasteur - Paris

tarek.sharshar@rpc.aphp.fr

The Paradigm

DELIRIUM

DSM IV

- **A.** <u>Troubles de la consciences</u>: interaction avec environment, attention et concentration
- **B.** Alteration d'au moins une fonction cognitive:
 - Langage
 - Mémoire
 - Orientation temporo-spatiale
 - Pensée et jugement

C. Début soudian ou rapidement progressif, <u>fluctuation des symptomes</u>

D. Secondaire à:

- Pathologie médicale
- Toxicité médicamenteurs
- Sevrage

MORTALITE

Figure 3. Kaplan-Meier Analysis of Delirium in the Intensive Care Unit and 6-Month Survival

Table 3. Delinium Status and Clinical Outcomes Including 6-Month Mortality and Lengths of Stay						
	No Delirium	Delirium	Adjusted P Value			
6-Month Mortality						
No.	41	183				
Rate, No. (%)	6 (15)	63 (34)				
Adjusted HR (95% CI)*	Reference	3.2 (1.4-7.7)	.008			

<u>Ely et al – JAMA - 2004</u>

DELIRIUM: DESEQUILIBRE DE LA NEUROTRANSMISSION

Central Nervous System

Blood Brain Barrier Cells

An imbalance favoring the production of neurotoxic metabolites leads to neuronal and glial cell injury, excitotoxicity, and apoptosis, which may be clinically manifested as delirium or coma.

KYNURENINE PATHWAY

Adams Wilson et al - Crit Care Med - 2012

Sepsis Associated Encephalopathy - Pathophysiology

SYSTEMIC/LOCAL INFLAMMATORY RESPONSE

Neuronal apoptosis/dysfunction

Post sepsis Psycho-Cognitive impairment ?

NEUROINFLAMMATORY PROCESS

EXPERIMENTAL OR CLINICAL DEMONSTRATION

- 1. Endothelial activation
- 2. Alteration of blood-brain barrier

Role of TNFa Role of complement

- 3. Brain expression of cytokines and iNOS
- 4. Microglial activation

Amplification of neuro-inflammatory process

- 5. Brain cells oxidative stress
- 6. Brain cell apoptosis
- 7. Alteration of neurotransmission

GLUCOSE?

WHITE MATER HYPERDENSITIES

15/72 (21%) septic shock patients who developped an acute brain dysfunction

BBB increased permeability/axonal damage/Demyelination

Might be associated with long-term cognitive impairment (Morandi et al – Psychiatry - 2011)

Before After Acquired during sepsis

<u>Sharshar et al - ICM – 2007;</u> Polito et al – Crit Care - 2013

MICROGLIAL CELLS

1. NEUROPROTECTION VS NEUROTOXIC

Blood glucose and cortex of critically ill rabbits

Normoglycemia

Sonneville et al – JCEM - 2013

ISCHEMIC PROCESS

Macrocirculatory dysfunction

- 1. Systemic hypotension or decreased blood flow
- 2. Impaired autoregulation

Microcirculatory dysfunction

- 1. Role of TNFa
- 2. Role of complement

Clotting disorder

NEUROTOXIC PROCESS

- SAE is characterized by EEG abnormalities
- Some EEG patterns are associated with outcome
- SAE results from neurotransmission impairment
- Sepsis impairs long-term potentiation
- Evidence of neuronal apoptosis

<u>Sharshar et al – Lancet – 2004</u> <u>Oddo et al – Crit Care Med - 2009</u>

BRAIN STRUCTURES

Hippocampus and frontal cortex

- Acute brain dysfunction
- Long-term psycho-cognitive dysfunction
- But not mortality

Concept of Brainstem Dysfunction

- Mortality
- Impaired arousal
- Impaired immune response

The Paradigm

POST-ICU SYNDROME

• NEUROMUSCULAR DYSFUNCTION (25 to 50%)

- Weakness
- Fatigue
- Pain
- PSYCHOLOGICAL DISORDERS (10 to 30%)
 - Anxiety
 - Depression
 - PTSD
- COGNITIVE IMPAIRMENT (30 to 100%)
 - Memory
 - Executive function, attention
 - Verbal fluencey
- IMMUNOLOGICAL /NEUROENDOCRINE DYSFUNCTION

AGE PREXISTING DISEASE CRITICAL ILLNESS SEVERITY (SEPSIS, ARDS) SEDATION/DELIRIUM

INTERDEPENDENCY

NE/IMMUNE DYSFUNCTION

MULTDIMENSIONAL CARE

HOW THE ICU PHYSICIAN CAN BE INTEGRATED? WHEN? FOR WH

DECLIN COGNITIF A MOYEN TERME

225 patients post-operatoire

<u>Saczynski et al – NEMJ - 2012</u>

Cognitive outcomes during follow-up

	Follow-up Assessment		
Outcome, % (n/total)	3 months (n=76)°	12 months (n=52)°	
No impairment	21% (16/76)	29% (15/52)	
Mild/moderate impairment	17% (13/76)	35% (18/52)	
Severe impairment	62% (47/76)	36% (19/52)	

77 Medical ICU patients

<u>Girard et al – Crit Care Med - 2010</u>

Long-Term Cognitive Impairment after Critical Illness

Global Cognition Scores in Survivors of Critical Illness.

Pandharipande et al – NEJM - 2013

Long-term Cognitive Impairment and Functional Disability Among Survivors of Severe Sepsis

Error bars indicate 95% confidence intervals (CIs); IQR, interquartile range. **Interpretive Example:** Compared with stable rates before severe sepsis, the prevalence of moderate to severe cognitive impairment increased from 6.1% (95% CI, 4.2%-8.0%) before severe sepsis to 16.7% (95% CI, 13.8%-19.7%) at the first survey after severe sepsis (P<.001 by χ^2 test; Table 2).

Iwashyna et at – JAMA - 2010

Bidirectional Relationship between Cognitive Function and Pneumonia

Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors

Systemic inflammation and disease progression in Alzheimer disease

Figure 1

Presence or absence of systemic inflammatory events and mean change in cognitive score from baseline

<u>Holmes et al – Neurology - 2009</u>

JAMA Psychiatry | Original Investigation

A Nationwide Cohort Study of the Association Between Hospitalization With Infection and Risk of Death by Suicide

Table 2. Incidence Rate Ratios of Suicide in Denmark (1980-2011) Among Persons With Psychiatric Diagnoses According to the Time of Infection

Variable	No. of Suicides	Person-years	Incidence Rate Ratio (95% CI)	
			Basic Adjustment ^a	Fully Adjusted ^b
Psychiatric diagnosis with no history of infection	8164	5 556 835	1 [Reference]	1 [Reference]
Infection before a psychiatric diagnosis	1733	1 584 976	1.27 (1.21-1.34)	1.21 (1.15-1.28)
Infection after a psychiatric diagnosis	1875	1 409 183	1.04 (0.99-1.09)	0.93 (0.88-0.98)
Total	11772	8 550 994	NA	NA

Lund-Sorensen et al – JAMA - 2016

Vascular Hypothesis

Neuroinflammatory Hypothesis

MRI IN PATIENTS WITH DELIRIUM

Increased risk of long-term cognitive dysfunction 1. White matter hyperintensities 2.Brain atrophy

Morandi et al – Psychiatry- 2011

Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model

Microglial priming, a recent concept

Long-term cerebral consequences of sepsis

Catherine N Widmann, Michael T Heneka

Initial acute-stage results of sepsis

- Sepsis-associated encephalopathy
- Acute systemic inflammation
- Cerebral damage (such as blood-brain barrier disruption, hyperfusion, cell apoptosis, neuronal loss, general slowing of EEG activity)
- (Micro)vascular damage in the CNS, vasogenic oedema, white matter hyperintensities
- Psychiatric burden (anxiety, depression, hallucinations, delusions)

Possible/permanent, long-term effects of sepsis

- Neurocognitive impairment (such as impaired attention, verbal fluency, verbal learning, and memory)
- Sustained brain inflammation?
- Cerebral damage (increased slow-wave activity in EEG, reduced volume of the hippocampus, chronic disruption of the blood-brain barrier)
- Increased risk of vascular brain disease (including a risk of vascular dementia)?
- Psychiatric burden (including raised levels of anxiety, depression, post-traumatic stress syndrome)
- Could other possible permanent effects of sepsis include the presence of Tau-pathology, an increase in amyloid β, and an increased risk of Alzheimer's disease?

Interventions for preventing or treating cognitive decline?

Lancet neurology - 2015

MICROGLIAL PRIMING

PSYCHO-COGNITIVE CONSEQUENCES

MICROGLIAL ACTIVATION

PHENOTYPES

PROCESSUS REVERSIBLE

– Plus accessibles à un traitement?

SEQUELLES FIXEES

PROCESSUS IRREVERSIBLE
– Neurodégénerescence

Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial

Although a sample size of 440 patients was planned, after inclusion of 104 patients with delirium, the trial was halted because

1.Mortality in the rivastigmine group (n=12, 22%) was higher than in the placebo group (n=4, 8%; p=0.07). 2.Median duration of delirium was longer in the rivastigmine group (5.0 days, IQR 2.7—14.2) than in the placebo group (3.0 days, IQR 1.0—9.3; p=0.06).

Van Eijk et al - Lancet - 2010
STATINS

CLP mice + atrovastatine

Reduced microglial activation

<u>Reis et al – Brain Behav & Immunity - 2016</u>

Rosuvastatin versus placebo for delirium in intensive care and subsequent cognitive impairment in patients with sepsis-associated acute respiratory distress syndrome: an ancillary study to a randomised controlled trial

Needham et al – Lancet Resp Med - 2015

Rosuvastatin versus placebo for delirium in intensive care and subsequent cognitive impairment in patients with sepsis-associated acute respiratory distress syndrome: an ancillary study to a randomised controlled trial

	Rosuvastatin group (n=53)	Placebo group (n=77)	Treatment effect (95% CI)	p value
Cognitive impairment	19/53 (36%)	29/77 (38%)	0.93 (0.39 to 2.22)	0.87
Executive function (mean Hayling Sentence Completion score, SD)	4.5 (1.8)	4.4 (2.1)	0.0 (-0.6 to 0.6)	0.92
Patients with score ≤1.5 SD	14/53 (26%)	25/75 (33%)	0.74 (0.31 to 1.80)	0.51
Language (mean Verbal Fluency score, SD)	31 (13)	32 (11)	-1 (-4 to 3)	0.80
Patients with score ≤1.5 SD	18/52 (35%)	20/76 (26%)	1.44 (0.54 to 3.80)	0.46
Verbal reasoning and concept formation (mean Similarities score, SD)	9.7 (3.8)	9.9 (3.0)	-0.4 (-1.5 to 0.7)	0.44
Patients with score ≤1.5 SD	7/52 (13%)	5/76 (7%)	2.29 (0.60 to 8.77)	0.23
Working memory and attention (mean Digit Span score, SD)	9.2 (2.5)	9.5 (2.6)	-0·3 (-1·2 to 0·6)	0.49
Patients with score ≤1.5 SD	1/52 (2%)	8/76 (11%)	0.17 (0.02 to 1.52)	0.11
Immediate memory (mean Logical Memory I score, SD)	8.6 (3.4)	8.9 (3.3)	-0.4 (-1.5 to 0.7)	0.49
Patients with score ≤1.5 SD	12/50 (24%)	14/76 (18%)	1-37 (0-50 to 3-76)	0.54
Delayed memory (mean Logical Memory II score, SD)	7.9 (3.3)	8.8 (2.7)	-1·2 (-2·2 to -0·2)	0.017
Patients with score ≤1.5 SD	12/50 (24%)	7/73 (10%)	3.06 (1.00 to 9.37)	0.050

Needham et al – Lancet Resp Med - 2015

Rosuvastatin versus placebo for delirium in intensive care and subsequent cognitive impairment in patients with sepsis-associated acute respiratory distress syndrome: an ancillary study to a randomised controlled trial

Needham et al – Lancet Resp Med - 2015

One-Year Outcomes in Caregivers of Critically Ill Patients

We prospectively enrolled 280 caregivers of patients who had received 7 or more days of mechanical ventilation in an ICU. Using hospital data and self-administered questionnaires, we collected information on caregiver and patient characteristics, including caregiver depressive symptoms, psychological well-being, health-related quality of life, sense of control over life, and effect of providing care on other activities. Assessments occurred 7 days and 3, 6, and 12 months after ICU discharge.

Cameron et al – NEJM - 2016

AUTRES APPROCHES

- PLASTICITE
 Rééducation cognitive
- NEUROGENESE
- NEUROINFLAMMATION réactivation microgliale prévention d'un nouveau sepsis
- NEUROTRANSMISSION

APPROCHE MULTIMODALE

CONTRÔLE DES FACTEURS DE RISQUE (DELIRIUM)

ABCDEF BUNDLE

<u>Balas et al – Semin Resp Care Med</u> - 2016

CONCLUSIONS

- Complications fréquentes ayant un impact sur la qualité de vie des patients et de leurs proches
- Physiopathologie complexe
- Détection systématique
- Approche multimodale

Acknowledgements

PFID, Institut Pasteur

Anne Danckaert

Human histopathology and animal models,

Institut Pasteur

Fabrice Chrétien Tarek Sharshar Patrick Ave Wagih Ben Hassen David Briand Laurence Fiette Patricia Flamant Raohael Gaillard Alexandre Haroche Franck Verdonk

Irore Besnarc

eiu

An

Institut Pasteur

ainte-Anne Teaching Hospita

Grégory Jouvion Sylvie Laganier Jean Mantz Sabine Maurin Aurélien Mazeraud Pierre Rocheteau **Tarik Hissem** David Hardy Anna Maignan Magalie Tichit Unité neurogénèse et memoire Damien Rei Gabriel Lepousez Pierre Marie Lledo

Unité cytokines et infla Catherine Fitting Jean-Marc Cavaillon

IOCRUZ & IDOR (RdJ, Brazil) Fernando Bozza Cassia Pedro Kurtz Jorge Salluh

CH ETAM Shidasp Siami Tarik Hissem Sivanthiny

ASSISTANCE DE PARIS

Neurosciences in Intensive Care International Symposium (NICIS)

Neuroscience of Critical illness : Ageing, Frailty and Resilience

June 08-09 2017

Institut Pasteur Paris

Scientific Organizers

Pr Fernando Bozza - Oswaldo Cruz Foundation Pr Jan Claassen - Columbia University College of Physicians & Surgeons Dr Vincent Degos - University of Pierre & Marie Curie Pr Jean Mantz - University Paris Diderot Pr Tarek Sharshar - University of Versailles, Institut Pasteur Dr Romain Sonneville - Paris Diderot University Pr Robert D Stevens - Johns Hopkins University

SFAR

University of Versailles Raymond Poincaré Service de Réanimation Pr Djillali Annane

Institut Pasteur Fabrice Chrétien Human Histopathology and Animal Models

MERCI

NEUROINFLAMMATORY PROCESS

A TIME-DEPENDENT PHENOMENON

THE KYNURENINE PATHWAY

<u>Dantzer et al – Nat Rev Sci - 2008</u>

Microglial priming, a recent concept

Microglial priming, a recent concept

PATHOPHYSIOLOGICAL RESPONSE TO STRESS

SICKNESS - DEPRESSION

Central Nervous System

Blood Brain Barrier Cells

An imbalance favoring the production of neurotoxic metabolites leads to neuronal and glial cell injury, excitotoxicity, and apoptosis, which may be clinically manifested as delirium or coma.

KYNURENINE PATHWAY

Adams Wilson et al - Crit Care Med - 2012

CELLS

Table 1

Homeostatic cellular function in the brain and pathophysiology during sepsis-associated encephalopathy

	Cell Type	Homeostatic Function	Cellular Changes	Mechanisms	Consequences
Glial cells	Astrocytes	Synaptic plasticity, ¹⁰⁵ neurovascular coupling, ⁷⁵ microenvironment homeostasy, ¹⁰⁵ BBB formation	Astrogliosis in mouse model ⁵⁹ but not in patients	Unknown	➡ BBB permeability Neuroinflammation Mediator of tissue damage ¹⁰⁵
	Oligodendrocytes	Myelin sheath formation and maintain	Unknown	Unknown	Worse myelination development, ¹⁰⁶ potently cognitive impairment
	Microglial cells	Innate immune system of the central nervous system ⁴⁴ Inflammatory cell recruitment	Microgliosis, ^{54, 58, 63} modification of their activation state, M1 or M2	Vagal nerve stimulation ^{52,107} IL-1 β^{49} and TNF- α^{57} exposure Other activating factors	Excitotoxic compound release ¹⁰⁶ iNOS expression ⁵⁴
Blood vessels	Endothelial cells	Blood vessel lining in their lumen Role in coagulation, vasoconstriction and vasodilation, inflammation,	Endothelial activation Inflammatory mediator leakage and production Cell recruitement ¹⁰⁸	TNF-α and other cytokine exposure ¹⁰⁹	BBB permeability Microthrombi Infarct Ischemic lesions ^{5,58}
	Pericytes	Blood vessel stabilization, vasoconstriction, vasodilation ¹¹⁰	Unknown	_	 BBB permeability Microthrombi, ischemic lesion, infarct Supply/demand oxygen inadequation⁵
Choroid plexus	Ependymal cell	Cerebrospinal fluid	Unknown	_	_
	Neurons	Information processing	Dysfunction (long-term potentiation ⁹⁵) apoptosis ^{54,58}	Glutamate excitotoxicity Metabolic impairment	Cognitive impairment ^{7,9,64}

Mazeraud et al - Clin Chest Med - 2016

Summary

MICROGLIAL PRUNNING OF SYNAPSES

FLOW CHART

222 Septic shock patients November 2005 to June 2012

71 Patients included with neurological signs

Polito et al – Crit Care - 2013

INFLAMMATION

NEURODEGENERATION

FEAR TO DIE

Fear to Die/severe critical illness ^{\$}	All N=356	Not Deteriorate N=192	Deteriorate N=164
NO/NO	122 (35)	75 (63)	47 (37)
YES/NO	98 (29)	65 (63)	36 (37)
NO/YES*	71 (19)	21 (30)	50 (70)
YES/YES**	62 (17)	31 (50)	31 (50)

Khi-2 P < 0.0001 Khi-2 P = 0.016

\$ SAPS-II > 30
*Impairment of perception of severity?
** Aggravating effect of anxiety?

Long-Term Cognitive Impairment after Critical Illness

Global Cognition Scores in Survivors of Critical Illness.

Pandharipande et al – NEJM - 2013

PATHOPHYSIOLOGY

Anxiety and deterioration

Anxious patients deteriorate more during the first 7 days in ICU

Multivariate Analysis

	OR [95%CI]	Р
Knaus	1.80 [1.09-2.99]	0.022
SOFA Total	1.44 [1.25-1.67]	< 0.0001
NIV at admission	4.47 [2.35-8.50]	< 0.0001
STAI ≥ 40	1.74 [1.01-2.89]	0.030
IGS > 30 + No Fear to die	2.23 [1.15-4.31]	0.017

Anxiety is quantitatively and qualitatively associated with further deterioration

+ structures involved in arousal and consciousness

<u>Annane et Sharshar – Lancet Resp Med - 2014</u>
Microglial mitochondriopathy during sepsis

MRI IN SEPTIC SHOCK PATIENTS

Number (%)	n=71
Neurological findings	
Focal neurological signs	13 (18)
Coma	33 (46)
Seizure	7 (10)
Delirium	35 (49)
Mixed	16 (23)
Neuroradiological findings	•
Leucoencephalopathy	15 (21)
Ischemia	21 (29)
Others	4 (6)
Mixed	6 (8)
Normal	37 (52)

<u>Polito et al – Crit Care - 2013</u>

COMPARISON

	Total 63	Normal 37	Leucoencephalopathy 10	Ischemia 16	Р
Demographics					
Age (years)	64 (55-75)	61 (48-78)	69 (67-75)	65 (63-74)	0.15
Women	25 (40)	12 (32)	4 (40)	9 (56)	0.30
Cardiovascular risk factors	37 (59)	19 (51)	8 (80)	10 (62)	0.25
SAPS II	49 (38-60)	52 (39-60)	49 (31-60)	48 (38-55)	0.79

Polito et al – Crit Care - 2013

PROBABILITY OF ABNORMAL MRI

COMPARISON

	Total 63	Normal 37	Leucoencephalopathy 10	Ischemia 16	Р
DIC	28 (44)	17 (46)	2 (20)	11 (69)	0.04
Lowest plasma hemoglobin level (g/dl) Neurological symptoms	7·9 (7·0- 10·1)	8·4 (7·1- 10·0)	7.5 (6.9-11.1)	7·6 (6·9- 9·9)	0.91
1. Focal neurological signs	11 (17)	2 (5) ^b	1 (10)°	8 (50)	0.004
2. Coma	31 (41)	17 (46)	2 (20)	10 (62)	0.11
3. Seizure	6 (10)	4 (11)	0 (0)	2 (12)	0.53
4. Delirium	31 (49)	19 (51)	7 (70)	5 (31)	0.15
Mortality	21 (33)	9 (24) ^b	2 (20)°	10 (62)	0.02
GOS 6 months \leq 3	30 (48)	$14(38)^{b}$	3 (30) [°]	13 (81)	0.007

CEREBRAL INFARCTS

Septic shock complicated by severe DIC. Patient died without recovering consciousnes

FLAIR

DWI

ADC

OCCLUSION

Polito et al – Crit Care - 2013

LEUCOENCEPHALOPATHY (white matter hyperdensities)

Polito et al – Crit Care - 2013

Long-term cerebral consequences of sepsis

Catherine N Widmann, Michael T Heneka

Initial acute-stage results of sepsis

- Sepsis-associated encephalopathy
- Acute systemic inflammation
- Cerebral damage (such as blood-brain barrier disruption, hyperfusion, cell apoptosis, neuronal loss, general slowing of EEG activity)
- (Micro)vascular damage in the CNS, vasogenic oedema, white matter hyperintensities
- Psychiatric burden (anxiety, depression, hallucinations, delusions)

Possible/permanent, long-term effects of sepsis

- Neurocognitive impairment (such as impaired attention, verbal fluency, verbal learning, and memory)
- Sustained brain inflammation?
- Cerebral damage (increased slow-wave activity in EEG, reduced volume of the hippocampus, chronic disruption of the blood-brain barrier)
- Increased risk of vascular brain disease (including a risk of vascular dementia)?
- Psychiatric burden (including raised levels of anxiety, depression, post-traumatic stress syndrome)
- Could other possible permanent effects of sepsis include the presence of Tau-pathology, an increase in amyloid β, and an increased risk of Alzheimer's disease?

Interventions for preventing or treating cognitive decline?

Lancet neurology - 2015

CEREBRAL BLOOD FLOW

CONTROVERSIAL

Should we monitor and "optimize" cerebral blood flow in patients with septic shock?

Table 1. Temporal and spatial expression of interleukin-1β, inducible nitric oxide synthase messenger RNA and Fos in circumventricular organs and adjacent structures after i.p. injection of 250 µg/kg lipopolysaccharide

		2 h			4 h			8 h	
	IL-1β	iNOS	Fos	IL-1β	iNOS	Fos	IL-1β	iNOS	Fos
AP									
medial	+	_	_	+	_	-	++	<u> </u>	+
ventrolateral border	+	-	_	+	_		+++	++	+
NTS	_	-	++	_	_	++	+	_	+
Median eminence									
ventral	+	_	_	+	-		++		<u></u>
dorsolateral border		-	_	-	-		++	+	
Arcuate nucleus	_	-	-		_	_	+	_	_
OVLT									
medial	+	-	-	+	_		++	_	+
lateral borders	_	-	_	+	_		+++	++	+
Medial preoptic area	_		++		_	++	+	_	+
Subfornical organ									
ventromedial	+	-	-	+	_	-	++	_	+
dorsolateral border	+	-		+	_	-	+++	++	+
Hippocampal commissure	_	-	_		-		+	+	
Choroid plexus	+	-	—	+		_	+	+	

-, no or very few positive cells (n < 5); +, few positive cells (5 < n < 25); ++, high number of positive cells (25 < n < 75); +++, very high number of positive cells (n > 75); n, numbers of labelled cells in a representative section of a given structure.

Konsman et al - Neuroscience-1999

HYPOTHESIS

Continuum? Reversibility?

profil B

profil C

Continuum : process posteriorly spreading from the *area postrema* (deprived from BBB, neuro-inflammatory signaling)

OUTCOMES

BRAIN DYSFUNCTION

Incidence: 24 to 50% of septic patients (Keh et al 2016; Azabou et al 2016)

<u>Criteria for sepsis</u>:

(Singer et al 2016)

Symptoms: (Polito et al 2013)

Electroencephalogram:

(Azabou et al 2015)

Outcomes

Box 4. qSOFA (Quick SOFA) Criteria

Respiratory rate ≥22/min

Altered mentation

Systolic blood pressure $\leq 100 \text{ mm Hg}$

Number (%)	n=71
Neurological findings	
Focal neurological signs	13 (18)
Coma	33 (46)
Seizure	7(10)
Delirium	35 (49)
Mixed	16 (23)
Total number of EEG	110
Dominant frequency-n (%)	
alpha	21 (19)
delta	36 (33)
theta	53 (48)
Amplitude—n (%)	
low-voltage	71 (65)
normal	39 (35)
Absence of reactivityn (%)	27 (25)
Electrographic seizure—n (%)	17 (15)
Periodic Discharges—n (%)	21 (19)
Triphasic waves—n (%)	7 (6)
Synek's scale (from 0 to 5)-median [IQR]	2 [1 to 3]
Synek's score ≥ 3 –n (%)	34 (31)

Increased mortality & morbidity (*Edelman 1996, Polito 2013, Azabou 2015, Schmidt 2016*)

EFFECTS OF SEDATION

- Most severe critically ill patients often require sedation
- Sedation is a risk factor for brain dysfunction (delirium or delayed awakening) and can mask the occurrence of a brain dysfunction
- How to detect acute brain dysfunction in sedated critically ill patients?

P14
N20
P14-N20
N20-P25
III
V
III-V

14 (24)	22 (52)
19 (33)	29 (69)
21 (36)	23 (55)
18 (31)	21 (50)

		0 (0)	14 (23)
17 (17)	18 (43)		
21 (36)	26 (62)		

EEG IN SEDATED SEPTIC PATIENTS

N=110 septic patients

Variables		Sedated at t recor	time of EEG ding	Delirium at record	elirium at time of EEG Developed Delirium recording (£) after EEG (¥)		In hospital Death		
		yes	no	yes	no	yes	no	yes	no
Number of patients	n (%)	46 (42)	64 (58)	22 (20)	42 (38)	32 (29)	48 (44)	23 (21)	87 (79)
Age (years)	mean (SD)	62.8 (16.0)	64.5 (19.6)	66.1 (19.8)	63.6 (19.6)	66.4 (16.9)	61.3 (18.9)	66.1 (15.9)	63.3 (18.5
SAPS-II at admission	median [IQR]	54 ***	34	42 *	33[25 to 40]	45 **	34	44	37
		[37 to 66]	[27 to 45]	[30 to 53]	[25 to 40]	[36 to 63]	[27 to 47]	[36 to 65]	[28 to 54]
Septic shock	n (%)	30 (65) ***	15 (23)	8 (36)	7 (17)	20 (62)**	13 (27)	9 (39)	36 (41)
SOFA at inclusion	median [IQR]	9 ***	3	4 **	3	7 ***	4	10 **	5
		[7 to 12]	[2 to 5]	[3 to 7]	[2 to 4]	[5 to 11]	[2 to 7]	[6 to 15]	[3 to 7]
EEG findings									
Delta-predominant	n (%)	24 (52)***	12 (19)	7 (32)	5 (12)	16 (50)**	7 (15)	11 (48)*	25 (29)
Low voltage	n (%)	40 (87)***	31 (48)	11 (50)	20 (48)	25 (78)	28 (58)	14 (61)	57 (65)
Absence of reactivity	n (%)	19 (41)***	8 (12)	5 (23)	3 (7)	13 (41) **	5 (10)	10 (43)**	17 (20)
Electrographic seizure	n (%)	6 (13)	11 (17)	7 (32)*	4 (10)	5 (15)	5 (10)	4 (17)	13 (15)
Triphasic waves	n (%)	0 (0) *	7 (11)	4 (18)	3 (7)	1 (3)	2 (4)	2 (9)	5 (6)
Periodic Discharges	n (%)	10 (22)	11 (17)	5 (23)	6 (14)	8 (25) *	5 (10)	7 (30)*	14 (16)
Synek score \geq 3	n (%)	23 (50)***	11 (17)	8 (36)**	3 (7)	14 (44)**	8 (17)	12 (52)***	22 (25)
Young score > 1	n (%)	26 (57)***	15 (23)	8 (36)	7 (17)	19 (59)***	8 (17)	12 (52)**	29 (33)

Azabou et al – Plosone - 2015

Acute CNS response to sepsis

Physiology: Sickness Behaviour

Brain dysfunction

- Confusion/delirium, sleepiness
- •EEG abnormalities correlate with mortality or delirium occurence

Coma requiring mechanical ventilationEpileptic crisis

Anesth Anal. 1956 Mar-Apr;13(2):395-400; discussion, 400-2.

[Prolonged epileptic crisis provoked by streptococcal septicemia; hibernation recovery].

[Article in French] DOUCHY E.

PMID: 15444936 [PubMed - indexed for MEDLINE]

Azabou et al Plos One 201

<u>Annane et Sharshar – Lancet Resp Med - 2014</u>

PATHOPHYSIOLOGY

SEPSIS-ASSOCIATED ENCEPHALOPATHY

Neuroinflammatory process (Delirium => neurodegenerative)

20% mortality

(Sharshar 2007, Polito 2011)

Ischemic process
(Delirium/focal => vascular dementia)

Macro/microcirculatory dysfunction

60% mortality

(Polito et al 2013, Sharshar 2007, Sharshar 2004)

Neurotoxic process (Delirium => neurodegenerative)

Amygdala – Fear conditionning

CS: conditionned stimulus US: unconditionned stimuls

LA: lateral nucleus CE: Central nucleus

During fear conditioning, the conditioned stimulus (CS) and unconditioned stimulus (US) are relayed to the lateral nucleus of the amygdala (LA) from thalamic and cortical regions of the auditory and somatosensory systems, respectively. The CS inputs enter the dorsal subregion of the LA, where interactions with the US induce plasticity in two functional cell types (so-called 'trigger' and 'storage' cells). CS information is then transmitted through further stations in the LA to the central nucleus of the amygdala (CE). Interactions between the lateral and central amygdala are more complex than illustrated, and involve local-circuit connections (see main text). The LA also communicates with the CE by way of connections with other amygdala regions (not shown), but the direct pathway seems to be sufficient to mediate fear conditioning. *Medina et al* – *Nature Rev Neuroscience - 2012*

Conclusion

 Why? Are the neurobiological bases of Anxiety and fear to die different? Is there an impairment of perception or integration of danger?

Critical Illness: Impairment of perception or integration of danger ?

INTEROCEPTION

Perception of inner danger (ex. peritonistis)

Peritonitis as a model of sepsis

Sepsis results in early microglial reactivity

Microglia exhibits late anti-inflammatory profile

ightarrow Is this the microglial priming?

Mitochondrial energetic dysfunction

MICROGLIAL PRIMING

PSYCHO-COGNITIVE CONSEQUENCES

CLINICAL EVIDENCE OF BRAINSTEM DYSFUNCTION

EFFECT OF SEDATION ON BRAINSTEM REFLEXES

Non brain injured critical ill patients sedated by $MDZ \pm sufentanyl$

Reproducibility of neurological examination was satisfactory 0.62 to 1)

<u>Sharshar et al – Crit Care Med – 2011</u>

NEUROLOGICAL ASSESSMENT

FOCAL SIGNS

Comparison between right and left body

1. Motor responses to order

or painful stimulation

- 2. Limbs tone
- 3. Tendon reflexes
- 4. Plantar reflex

BRAINSTEM RESPONSES

- 1. Eyes spontaneous movement
- 2. Eyes position
- 3. Oculocephalogyre response
- 4. Pupillar size
- 5. Pupillar light reflex
- 6. Corneal reflex
- 7. Grimace
- 8. Cough reflex

12-24H OF SEDATION	Validation set
Number of patients	72/144
Midazolam (mg/kg)	1.3 (0.8 to 2.0)
Subfentanyl (µg/kg)	2.0 (0.7 to 4.6)
Sedation to inclusion (hours)	12 (12-24)
RASS	-4 (-4 to -2)
Blinking to strong light (%)	28 (39)
Absent eye movement (%)	67 (93)
Myosis (%)	38 (54)
Pupillary light response (%)	58 (82)
Corneal reflex (%)	66 (92)
Oculocephalic response (%)	33 (46)
Cough response (%)	60 (83)
Grimacing (%)	48 (69)

<u>Sharshar et al – Crit Care Med – 2011</u>

144 deeply sedated non brain-injured critically ill patients Responses assessed between the 12th and 24th h of sedation

Mortality

	Development Set	Development Set		Validation Set		
	Odds Ratio (95% Confidence Interval)	р	Odds Ratio (95% Confidence Interval)	р		
Simplified Acute Physiologic Score II at inclusion	1.06 (1.02–1.09)	.003	1.03 (1.00–1.07)	.051		
Absent cough response C-index (SE)	7.80 (2.00–30.4) 0.836 (0.055)	.003	5.44 (1.35-22.0) 0.743 (0.067)	.017		

Data are presented as adjusted odds ratio (95% confidence interval). The model for 28-day mortality was maintained irrespective of the participating center (p = .62).

Sharshar et al – Crit Care Med – 2011

144 deeply sedated non brain-injured critically ill patients Responses assessed between the 12th and 24th h of sedation

Post-sedation altered mental status (delayed awakening + delirium)

	Development Set Confusion or Coma	Validation Set Delirium or Coma		
Criteria	Odds Ratio (95% Confidence Interval)	p	Odds Ratio (95% Confidence Interval)	р
Simplified Acute Physiologic Score II at inclusion	1.04 (1.00-1.07)	.058	1.03 (0.99–1.08)	.10
Absent oculocephalic response	4.49 (1.34-15.1)	.015	5.64 (1.63-19.5)	.006
Simplified Acute Physiologic Score II at inclusion	1.04 (1.00-1.07)	.057	1.04 (0.99–1.09)	.088
Medical admission	0.92 (0.21-4.10)	.91	8.26 (1.94-35.2)	.004
Absent oculocenhalic response	4.54 (1.34-15.4)	.015	6.10(1.48-25.1)	.012

Data are presented as adjusted odds ratio (95% confidence interval). The model for altered mental status was maintained, irrespective of the participating center (p = .47).

<u>Sharshar et al – Crit Care Med – 2011</u>

NEUROLOGICAL EXAMINATION

ONE BY ONE SIGN TO SYNDROMIC APPROACH

IS THERE A NEUROLOGICAL SYNDROME OF DEEPLY SEDATED PATIENTS?
SYNDROMIC APPROACH (Latent class analysis)

141 deeply sedated non-brain injured critically ill patients

Rohaut et al - Submitted

PROFILES

	Homogenous N=77 (55%)	Heterogenous N=64 (45%)	р
Midazolam cumulative dose	1.2 (0.8 to 2.0)	1.3 (0.7 to 1.9)	0.83
Sufentanyl cumulative dose	2.4 (1.3 to 4.4)	2.2 (1.5 to 4.4)	0.63
Age	65.1 (14.9)	69.3 (15.7)	0.14
Sexe (%)	34 (44)	23 (36)	0.39
SAPS-II	51 (36 to 65)	58 (47 to 77)	0.013
SOFA	10 (7 to 13)	14 (11 to 16)	< 0.0001
RASS -5	40 (52)	51 (80)	0.0007
Sepsis (%)	33 (41)	44 (41)	0.99
Coma (%)	14 (24)	26 (59)	< 0.05
Delirium (%)	34 (49)	25 (68)	< 0.05
Day 28 mortality	9 (12)	33 (52)	< 0.0001
ICU mortality (%)	15 (19)	38 (59)	< 0.0001

Rohaut et al - Submitted

MORTALITY

MULTIVARIATE ANALYSIS

	OR (95% CI)	Р	OR (95% CI)	P
SAPS-II	1.04 (1.02 to 1.06)	0.0002	1.03 (1.01 to 1.06)	0.003
Latent class B			6.93 (2.88 to 16.7)	< 0.0001
Likelihood ratio	15.60		37.08	< 0.0001
c index (95% CI)	0.69 (0.60 to 0.79)		0.80 (0.73 to 0.88)	0.008
NRIc			0.945	< 0.0001
IDI			0.138	< 0.0001

Heterogeneous (Latent class B) remained associated with increased 28days mortality, after adjustment on

- 1 SAPS-II and RASS (OR [95%IC] = 6.44 [2.63-15.8], p < 0.0001),
- 2 SOFA (OR [95%IC]) 5.13 [2.08-12.6]; p = 0.0004)
- 3 SOFA and RASS (OR [95%IC]) 5.02 [2.01-12.5]; p = 0.0005).

Rohaut et al - Submitted

POTENTIAL MECHANISMS

profile heteregneous?

EXPERIMENTAL SEPSIS-RVLM

NEURONAL APOPTOSIS

Patients who had died from septic shock (neuroendocrine and autonomic centers)

Locus coeruleus

MULTIFOCAL NECROTIZING LEUKOENCEPHALOPATHY

<u>Sharshar et al - Lancet – 2003</u>

<u>Sharshar et al – CCM- 2012</u>

Inappropriate Sympathetic Activation at Onset of Septic Shock

A Spectral Analysis Approach

DJILLALI ANNANE, FABIEN TRABOLD, TAREK SHARSHAR, IRÈNE JARRIN, ANNE SOPHIE BLANC, JEAN CLAUDE RAPHAEL, and PHILIPPE GAJDOS

Annane et al – AJRCCM - 1999

BAROREFLEX SENSITIVITY

Fig. 2. Effect of cecal ligation and puncture (CLP) on mean arterial pressure (MAP), heart rate (HR), baroreflex sensitivity (BRS) and plasma vasopressii results are expressed as mean \pm SEM. Statistical analysis was performed using ANOVA followed by TUKEY test. **P*<0.05 compared to sham. ⁺*P* compared to other time points within CLP group. The number of animals was 5 for each group for cardiovascular measurements and 5–10 for each time-po plasma vasopressin measurements.

Pancoto et al - Auton Neurosci - 2007

Early Standard Electroencephalogram Abnormalities Predict Mortality in Septic Intensive Care Unit Patients

Azabou et al – Plosone - 2015

	-						
	OR	(95%CI)	Р	OR	(95%CI)	Р	
Delta-dominant activity	3.36	(1.08 to 10.4)	0.036	3.08	(0.93 to 10.2)	0.066	
Absence of reactivity	4.44	(1.37 to 14.3)	0.013	4.57	(1.36 to 15.4)	0.014	

n=86 critically ill deeply sedated patients Sepsis: 56 (63%); Age: 61 ± 18; SAPS-II: 50 ± 18

Abolition of oculocephali response

Neuronal apoptosis of L Multifocal necrotizing leukoencenhalopathy

Abolition of cough reflex Impaired HR/BP variability Neuronal apoptosis

Signaling dysfunction

Osmoperception - Osmoregulation

Osmoreceptors are located in the OVLT (CVO deprived of BBB), sense changes in osmolality and modulate synthesis and release of AVP

Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

Osmoregulation of vasopressin secretion is altered in the postacute phase of septic shock*

Osmoregulation and thirst perception alteration after Sepsis

Siami et al – Crit Care Med – 2010; Siami et al – Plosone – 2013

Stare et al – J Neurosci - 2015

Behavioural response to stress

Role of amygdala

The role of amygdala is to adapt behaviour or emo. ons to s. muli

CeA Microglial activation at H6

The microglia in the central nuclei of the amygdala is intensely activated during sepsis and comes back to normal after 15 days

THE AMYGDALA TUNING

BRAIN DYSFUNCTION IN CRITICALLY ILL (SEPTIC) PATIENTS

Frequent

- Clinical marker of sepsis (onset, uncontrolled or relapsing)
- Up to 50% of septic patients
- Impairment of consciousness

Detectable

- Neurological examination (*validated* scales)
- Neurophysiological tests (EEG, EP)

<u>Severe</u>

- Increased mortality (up to 60%)
- Long-term cognitive impairment
- Long-term psychological disorders

Box 4. qSOFA (Quick SOFA) Criteria

Respiratory rate \geq 22/min

Altered mentation

Systolic blood pressure ≤100 mm Hg

Singer et al – JAMA - 2016

CEREBRAL INFARCTS

21/72 (29%) of septic shock patients who developped an acute brain dysfunction Associated with low platelets count and DIC Associated with increased mortality up to 60%

FLAIR

DWI

ADC

OCCLUSION

Polito et al – Crit Care - 2013

NEUROPATHOLOGY

ISCHEMIA (100%)

IDC (30%)

MICRO ABSCESSES (10%)

Sharshar et al - Brain Pathology - 2004

MICROCIRCULATION

CI: cardiac index FCD: functional capillary density

Septic

<u>Taccone et al – Crit Care - 2010</u>

Control