

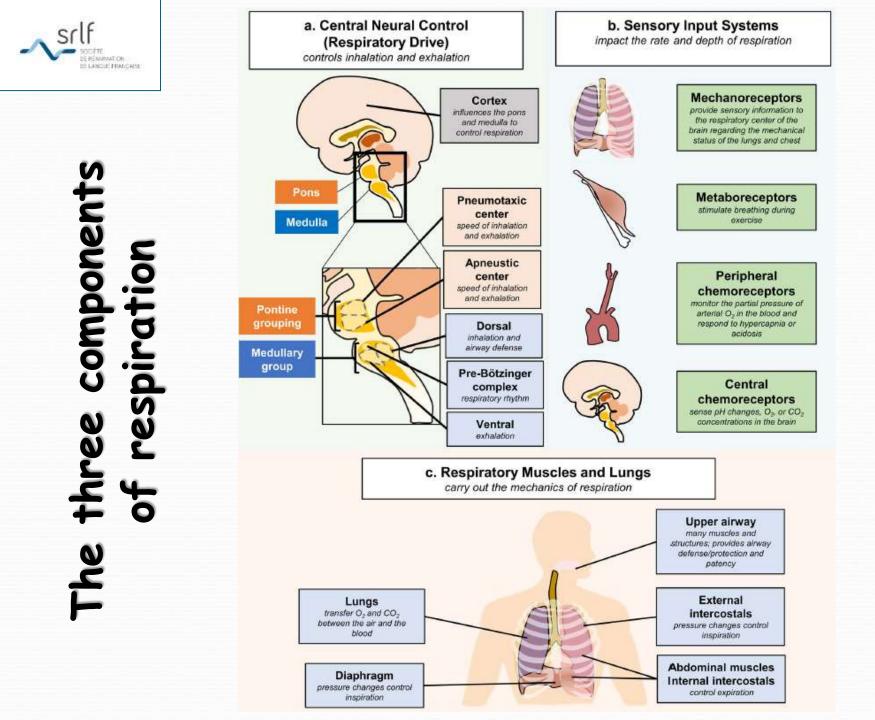
Drug-induced neuro-respiratory alterations useful for physiotherapists

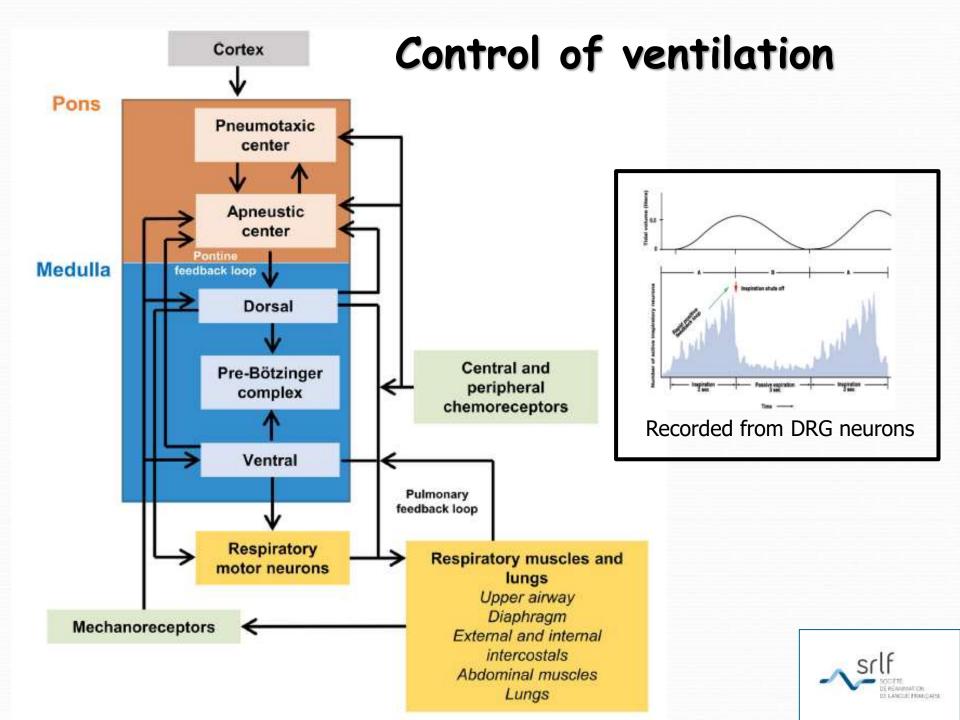
Bruno Mégarbane, MD, PhD

Department of Medical and Toxicological Critical Care, Lariboisière Hospital, INSERM UMRS-1144, Paris-Cité University, Paris, France bruno.megarbane@lrb.aphp.fr

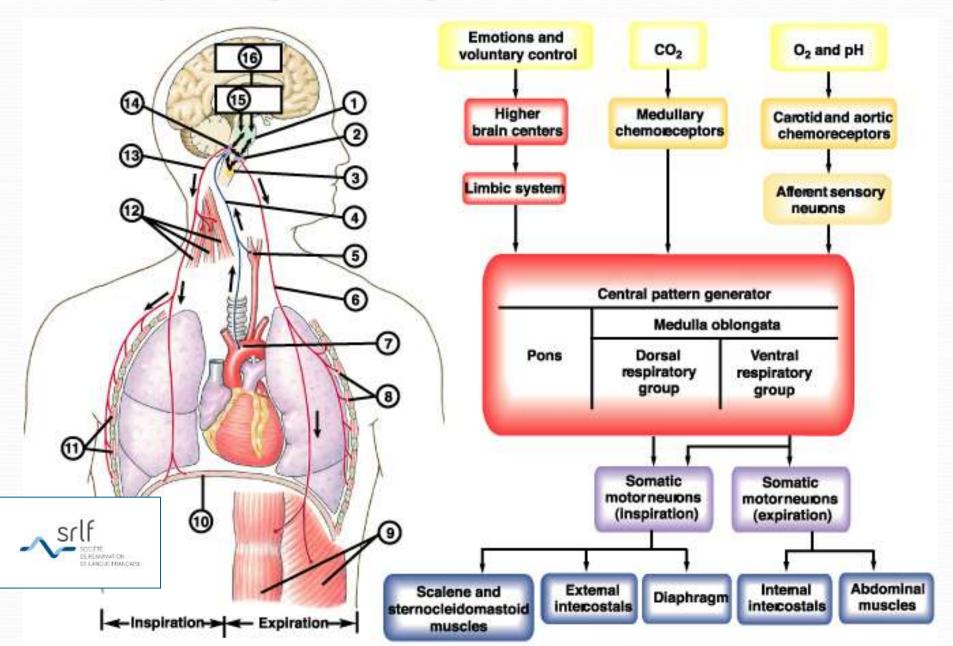
No conflict of interest to declare

True or false?


1- There is an excellent parallelism between the coma Glasgow score and the gag reflex suppression in a patient with suspected drug-induced coma.


2- The right basal site of aspiration pneumonia is the most common regardless of the comatose patient's position.

3- SpO_2 is a better surrogate marker of respiratory depression than $PaCO_2$.


4- Benzodiazepines are mainly responsible for a CNS respiratory depression.

5- Naloxone administration is at risk and systematically requires a medical prescription in a comatose patient with suspected opioid overdose.

Physiological regulation of ventilation

Mechanisms of drug-induced acute respiratory failure

Type 1 Alteration of the ventilation/perfusion ratio

Hypoxemia + hypo/normocapnia PaO₂ <8 kPa / PaCO₂ <6 kPa Aspiration pneumonia +++ Atelectasia Direct toxicity Pneumonitis (ARDS) Cardiogenic edema

Type 2 Alveolar hypoventilation

Hypoxemia + hypercapnia PaO₂ <8 kPa / PaCO₂ >6 kPa Central apnea Obstructive apnea Bronchospasm Neuromuscular blockage

Jay SJ. Am Rev Respir Dis 1975

Drugs and pathophysiology of respiratory failure

Aspiration pneumonia ARDS Cardiogenic edema

All sedative drugs

Stabilisants de membrane, paraquat Cardiotropic drugs

Alveolar depression Central apnea Obstructive apnea Bronchospasm Neuromuscular blockage Opioids, barbiturates, cyanide Benzodiazepines ethanol Inhaled drugs/toxicants Muscle-paralyzing agents, anticholinesterase agents

Aspiration pneumonia

1

The non drug-specific mechanism of acute respiratory failure

Pathogenesis and risk factors for aspiration

Pathogenesis and risk factors for the development of pneumonia after macroaspiration

Risk Factors

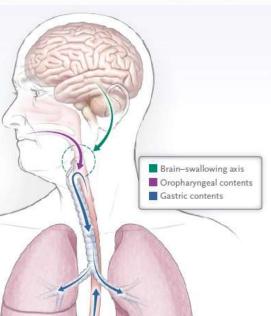
Impaired swallowing

Esophageal disease: dysphagia, cancer, stricture Chronic obstructive pulmonary disease Neurologic diseases: seizures, multiple sclerosis, parkinsonism, stroke, dementia Mechanical ventilation extubation

Impaired consciousness

Neurologic disease: stroke Cardiac arrest Medications General anesthesia Alcohol consumption

Increased chance of gastric contents reaching the lung Reflux Tube feeding


Impaired cough reflex Medications

Alcohol

Stroke

Dementia

Degenerative neurologic disease Impaired consciousness

Mandell LA. NEJM 2019

Defense mechanisms to prevent aspiration include strong cough reflex, active mucociliary clearance mechanism, and effective immune system.
Aspiration results from altered swallowing due to CNS dysfunction such as coma. Oropharyngeal or gastric contents can enter the lung. Impaired cough reflex increases the likelihood that aspirated material reach the lung

Aspiration pneumonitis in an overdose population: frequency, predictors, and outcomes

Patients with aspiration pneumonitis: 1.6% [1.2-2.0]

Higher ICU admission rate

Increased mortality: 8.5% vs. 0.4%; OR, **23** [9-60]; p <.0001)

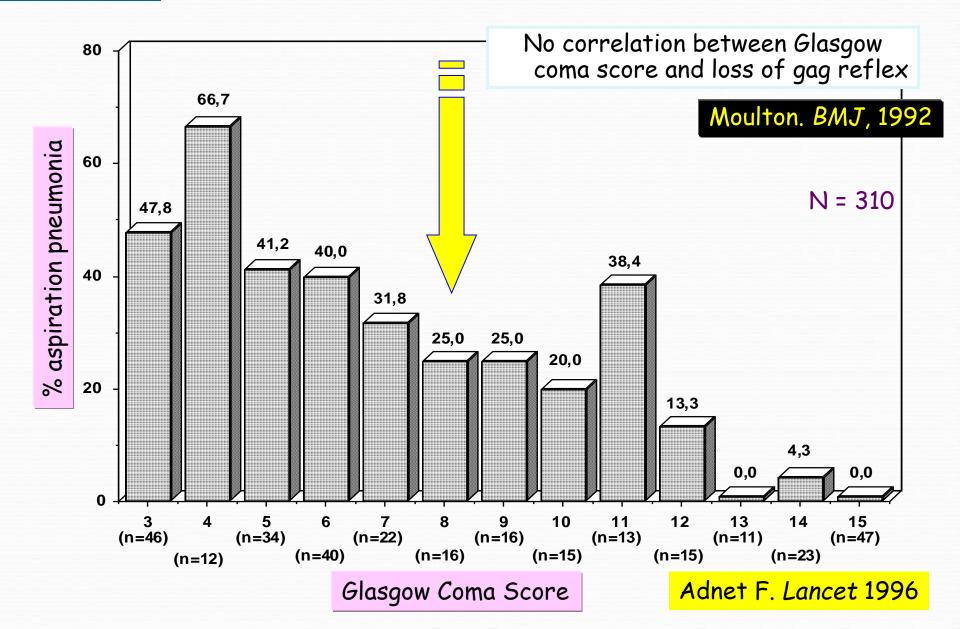
Prolonged ICU stay (126 h [62-210] vs. 14.7 h [7-23]; p < .0001).

Predictor	Odds Ratio	95% Confidence Interval
Age 10-yr increase Emesis	1.18	1.01 - 1.38
No (reference) Yes Ingestion to hospital presentation time	2.41	1.34 – 4.34
<pre><4 hrs (reference) 4-24 hrs >24 hrs</pre>	2.89 4.64	1.41 - 5.96 2.45 - 8.79

Isbister GK. Crit Care Med 2004

Risk factors for prolonged ICU stay in self-poisoned patients

Selected parameters	Odds ratio	p Value		
Demographics and history				
Age	1.02 (0.99; 1.04)	0.1		
Psychiatric diseases	0.78 (0.38; 1.59)	0.5		
Addiction	0.62 (0.31; 1.26)	0.2		
Toxicants				
Psychotropic drugs	1.18 (0.53; 2.62)	0.7		
Cardiotoxicants	0.68 (0.26; 1.73)	0.4		
Ethanol	0.28 (0.11; 0.66)	0.005		
Multidrug exposure	1.13 (0.52; 2.45)	0.8		
Clinical parameters on admission				
SAPS II	1.01 (0.99; 1.03)	0.3		
Glasgow coma score	0.98 (0.89: 1.06)	0.6		
Complications		est pers		
Aspiration pneumonia	8.48 (4.28; 17.3)	< 0.001		
Cardiovascular failure	1.33 (0.51; 3.43)	0.6		
Cardiac contractility impairment ^b	0.64 (0.23; 1.76)	0.4		
Cardiac arrest	0.15 (0.04; 0.52)	0.003		
Seizures	2.49 (0.77; 8.73)	0.1		
Acute kidney injury	3.15 (1.36; 7.39)	0.008		
Acute liver failure	0.69 (0.25; 1.99)	0.5		
Rhabdomyolysis	0.97 (0.44; 2.12)	0.9		
Multiple organ failure	8.06 (3.43; 19.9)	< 0.001		
Outcome				
Delayed awakening ^c	8.64 (2.58; 40.7)	0.002		
Management				
Veno-arterial ECMO	0.82 (0.23; 3.13)	Naim G. Clin Tox 202		


Aspiration pneumonia in the poisoned patient: necessity of early airway management

2012

Association between aspiration pneumonia onset and delayed intubation until arrival at the ED

N=72	Patients with Aspiration Pneumonia	Patients withou Aspiration Pneumonia	<i>p</i> -Value	
Women	12	27	-	
Men	9	24	0.75	
GCS of 8 or less	15	32	0.48	
Emesis	8	7	0.046	
Active charcoal	3	1	0.07	
Delayed intubation to ED admission in unconscious	9	4	0.002	
patient		Montassier E. J	Emerg Med	

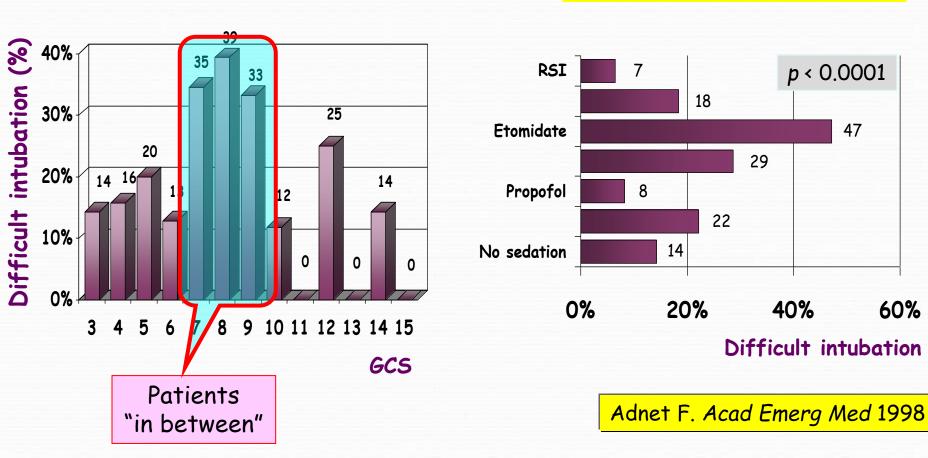
Relation of body position at the time of discovery with aspiration pneumonia in the poisoned comatose patients

	Position	Aspiration pneumonia	GCS
	Prone (n=20)	1 (5%)*	6 ± 3
	Suppine (n=115)	48 (42%)	6 ± 3
l	Left Lateral (n=31)	8 (26%)	6 ± 3
Right lateral (n=21)		11 (52%)	6 ± 2
Se	mi-recumbant (n=20)	3 (15%)*	8 ± 2 ^{\$}

*p<0.01 vs other positions; *p<0.05 vs other positions

Adnet F. Crit Care Med 1999

Relationship between the position of the body position at the time of discovery and aspiration pneumonia on chest X-Ray


_	_					
			Right Inf.	Right Sup.	Left Inf.	Left Sup.
			Quadrant	Quadrant	Quadrant	Quadrant
	Supine		69%	37%	20%	14%
	Left lateral Right lateral		57%	14%	29%	0%
			80%	50%	30%	20%
srl	F SCIÉTÉ E REANIMATION					

Adnet F. Crit Care Med 1999

Tracheal intubation difficulty in the comatose poisoned patient

Difficult intubation is frequent in the pre-hospital setting (~11%). In poisonings, it averages 20%. Choosing the best sedative drugs for anesthesia induction is highly difficult

Adnet F. Eur J Emerg Med 1998

Intracuff pressures of endotracheal tubes in the management of airway emergencies: an observational study

- First measurement > 27 cm H_2O in 79% patients (85/107)
- Mean value: 56 cm H_2O in the extra-hospital patients and

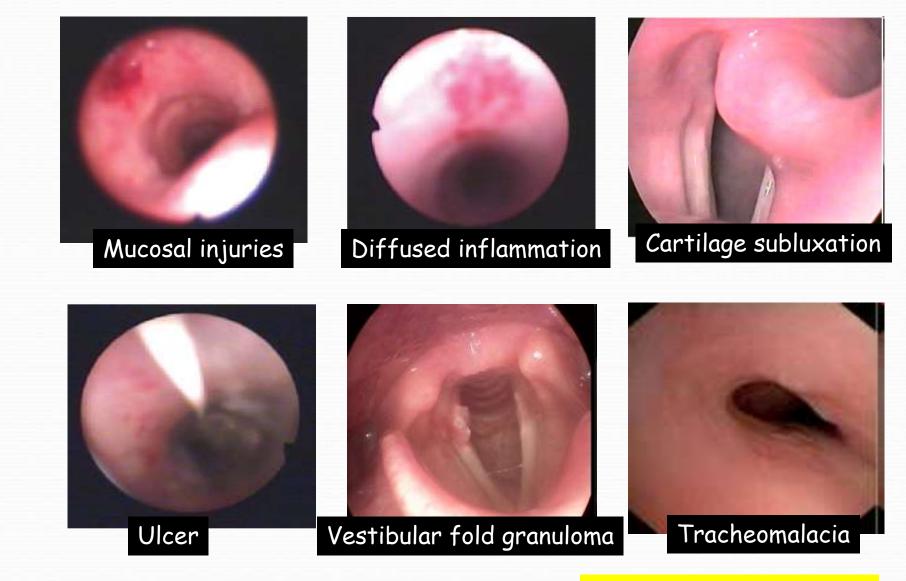
 $69 \text{ cm } H_2O$ in the transferred patients

- A correction is required in 72% of the patients (77/107)

Galinski M. Ann Emerg Med 2006

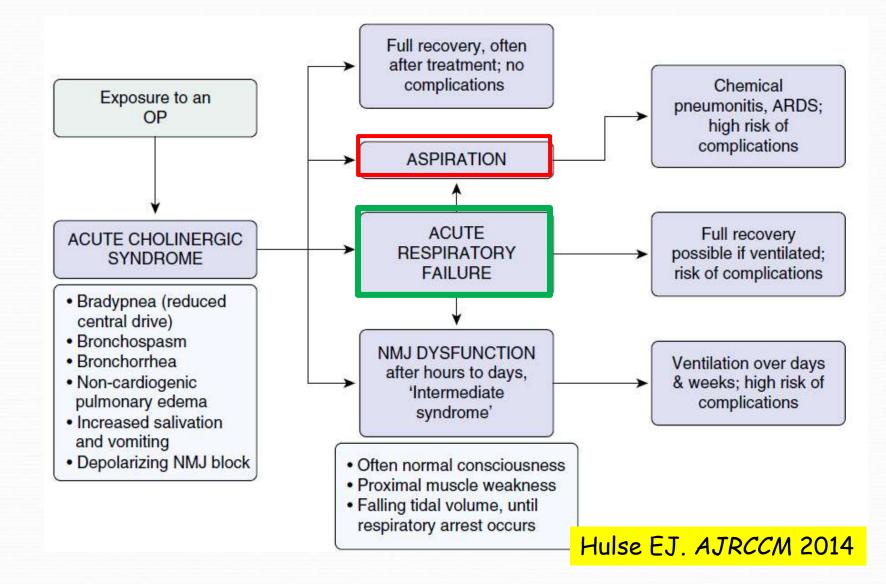
Laryngeal injuries in relation to tracheal intubation

Evaluation of post-extubation laryngeal injuries in 209 poisonings

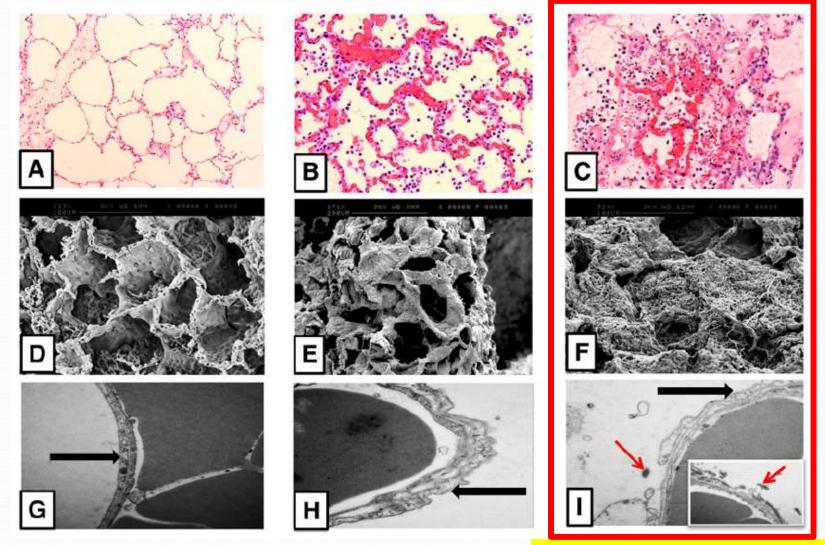

	Epiglottis	Ventricular bands	Vocal cord		Arytenoid			
			Right	Left	Right	Left	Subglottis	Number of patients (%)
Number of patients								
Normal	168	170	102	95	105	110	163	42 (20%)
With injury	41	39	107	114	104	99	46	167 (80%)
Number of separate sc	ored lesions							
Mucosal edema	29	37	54	57	86	84	32	135 (65%)
Ulceration	11	2	38	38	14	13	10	65 (31%)
Reduced mobility	-	-	14	11		-	-	25 (12%)
Immobility	-	-	1	5	-	-		6 (3%)
Granuloma	1	-	12	10	2	-	4	14 (7%)
Subluxation	-			-	2	2	-	4 (2%)
Total ^a	41	39	119	121	104	99	46	167 (80%)

- Median duration of intubation: 24 h (13-52)
- Non-planed self-extubation : 27%

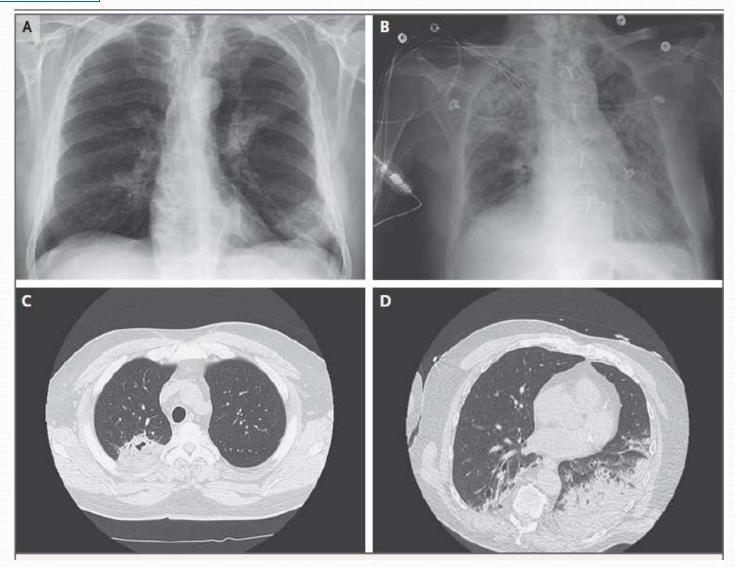
Mégarbane B. Clin Tox 2010


The main intubation-related laryngeal injuries

Liu J. Anesth Analg 2010



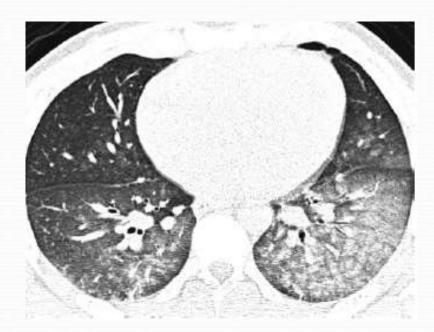
Respiratory system toxicity secondary to organophosphorus poisoning


Effects of hematogenous (indirect) vs aspirated (direct) organophosphorus on minipig lung

Hulse EJ. AJRCCM 2014

Imaging to diagnose aspiration pneumonia

Cavitary infiltrate in the right lower lobe


Mandell LA. NEJM 2019

Cocaine-induced cardiogenic pulmonary edema

36-yr-old cocaine abuser woman who presented with shortness of breath and chest pain after smoking crack

Bilateral heterogeneous opacities

Extensive bilateral heterogeneous central and parahilar opacities

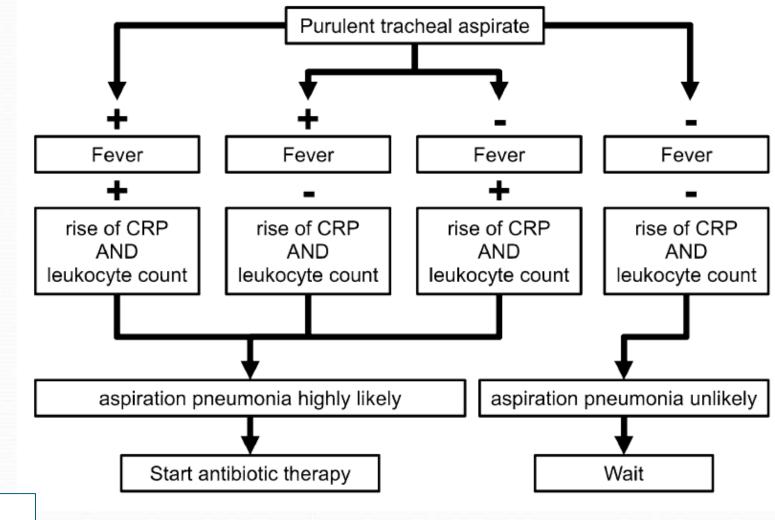
Restrepo CS. Radiographics 2007

Cardiac toxicity

Crack lung

Acute syndrome after the inhalation of (free base) cocaine Presentation: Fever, hypoxemia, hemoptysis, respiratory failure

Opacities with peripheral distribution Extensive bilateral ground-glass opacities and airspace consolidation.


Suggested mechanisms: high temperature of volatilized drug, impurities, local vasoconstriction, macrophage activation

Restrepo CS. Radiographics 2007

Suspicion of aspiration pneumonia in the comatose poisoned patient

ASPIRATION PNEUMONITIS

ASPIRATION PNEUMONIA

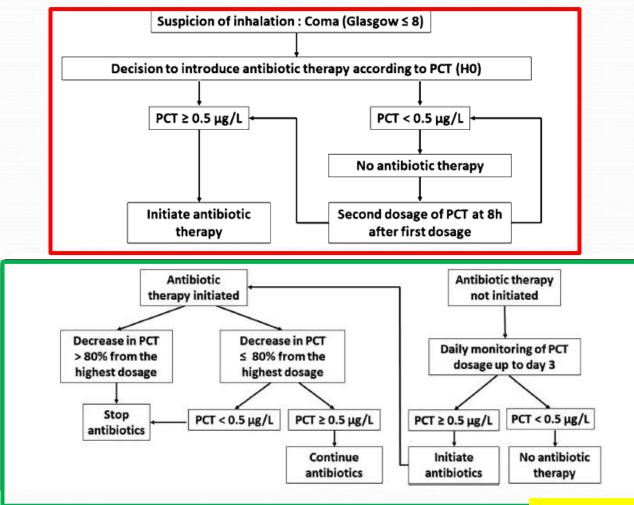
CONTRE ENERGY AND CALL CANCELET FUNCTION

Lauterbach E. Intern Emerg Med 2014

Value of CRP in the detection of bacterial contamination at the time of presentation in drug-induced aspiration pneumonia

1.0 0.8 0.6 SENSITIVITY 0.4 0.2 -WBC CRP TEMPERATURE 0.0 0.0 0.2 0.4 0.8 0.6 1.0 1-SPECIFICITY

CRP >75 mg/L is associated
with aerobic bacterial content
 of aspiration pneumonia
(Se=87%, Spe=76%, PPV=78%,
 NPV=87%).


By contrast to temperature and WBC, early CRP measurement is useful for diagnosis and perhaps in determining the need for invasive sampling.

Adnet F. Chest 1997

RCT

Impact on antimicrobial consumption of PCT-guided antibiotics for aspiration pneumonia in comatose ventilated patients: a randomized controlled study

PCT to guide therapy vs. clinical, biological and radiological criteria, does not modify exposure to antibiotics in comatose intubated patients

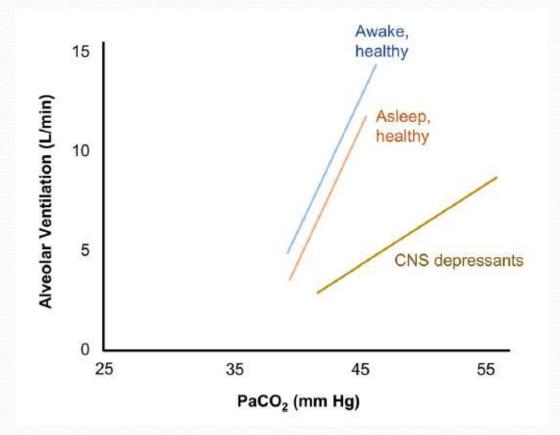
Labro G. Ann Intensive Care 2004

Antibiotic therapy in ventilated comatose patients following aspiration: differentiating pneumonia from pneumonitis

- Among ventilated comatose patients, those without clinical, laboratory, or radiologic evidence of bacterial aspiration pneumonia did not require antibiotics.

- In those with suspected bacterial aspiration pneumonia, stopping empirical antibiotic therapy when routine telescopic plugged catheter sampling recovered no microorganisms was nearly always effective.

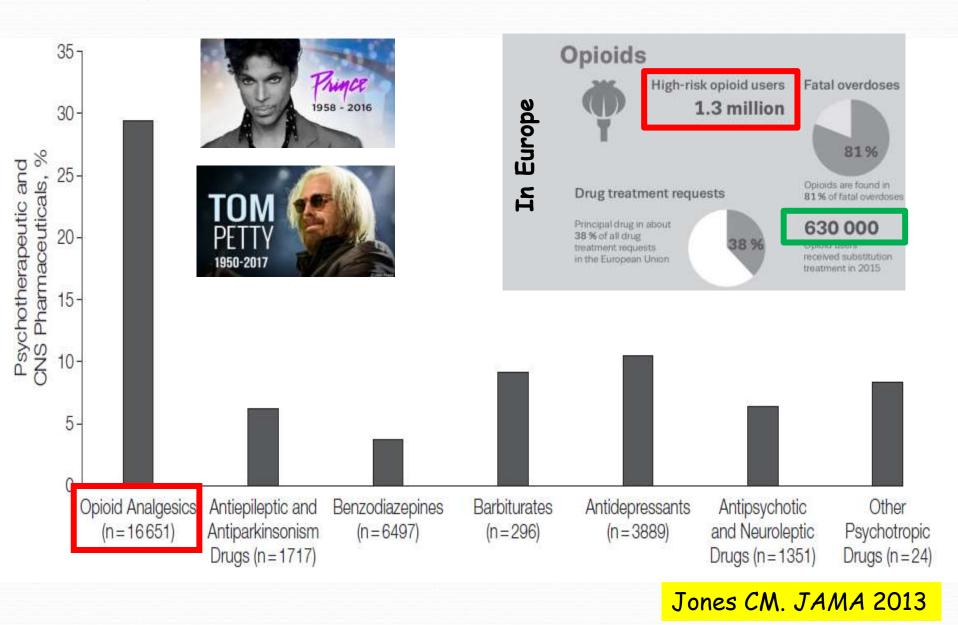
- This strategy may be a valid alternative to routine full-course antibiotic therapy. Only half the patients with suspected bacterial aspiration pneumonia had confirmed diagnosis.


Lascarrou JB. Crit Care Med 2017

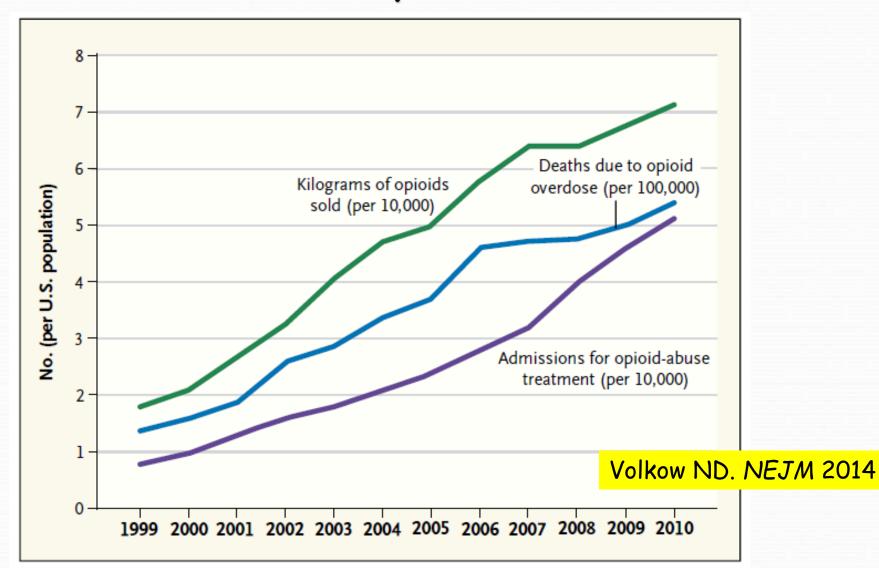
2

Central respiratory depression

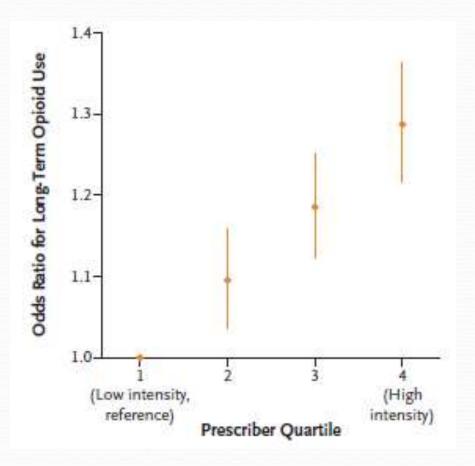
Effect of CNS depressant exposure on the CO₂ response curve


Pharmaceuticals and recreational depressant drugs can suppress one or more steps in respiration and patency.

Common depressors are opioids and barbiturates, >> benzodiazepines, Z drugs, and ethanol.

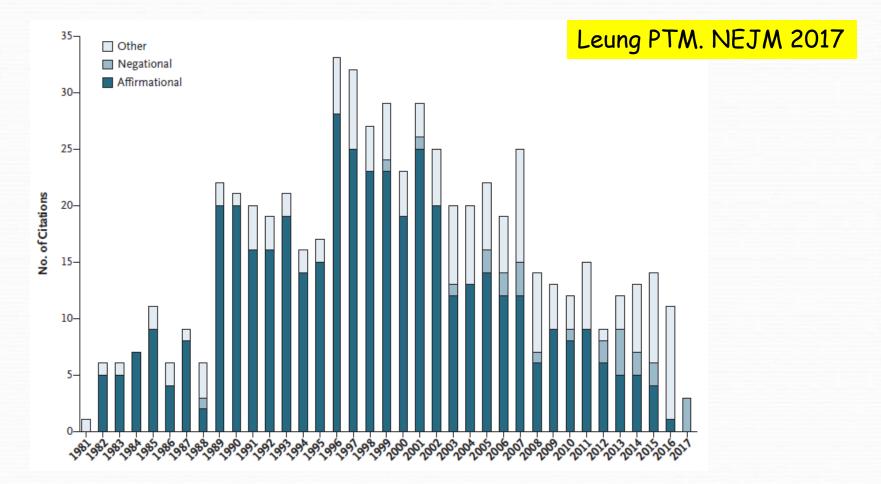

Webster LR. Pain Ther 2020

Opioids : the first cause of toxic death



The US Opioid-Overdose Epidemic Opioid sales, admissions for opioid-abuse treatment and deaths due to opioid overdose, 1999–2010

Opioid-prescribing patterns of emergency physicians and risk of long-term use


- Rates of opioid prescribing varies widely between low-intensity and high-intensity prescribers (7.3% vs. 24.1%).

- Long-term opioid use is higher among patients treated by highintensity prescribers than among patients treated by low-intensity prescribers (adjusted OR, 1.30 [1.23 to 1.37]; P<0.001)

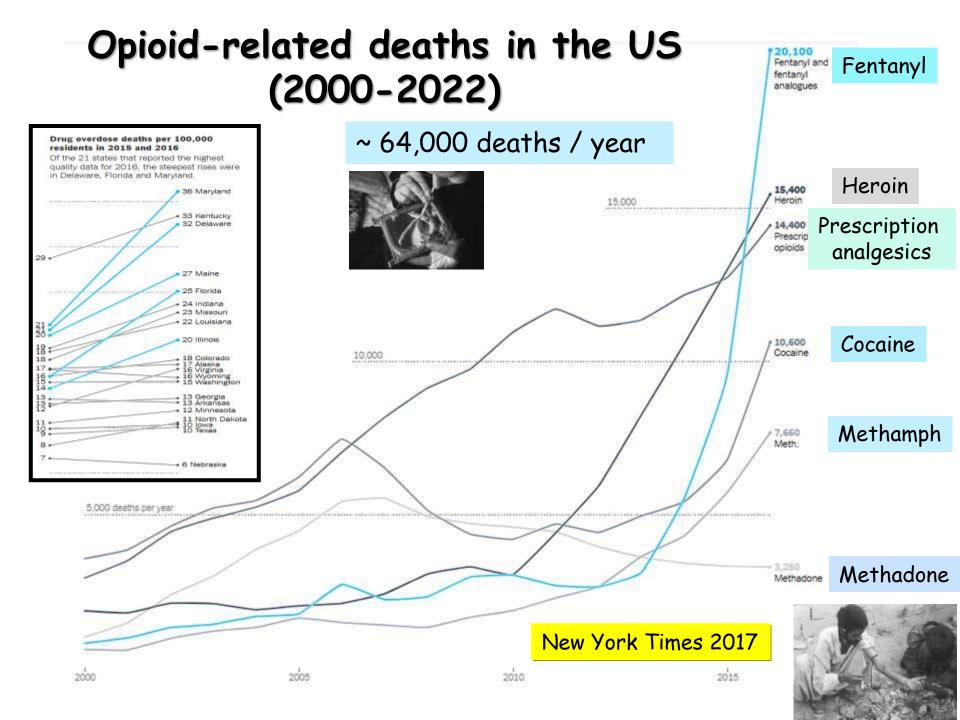
Barnett ML. NEJM 2017

A 1980 NEJM letter on the risk of opioid addiction when prescribed for chronic pain

A 5-sentence letter published in the NEJM in 1980 was uncritically cited as evidence that addiction was rare with long-term opioid therapy [439/608 (72%)]

Porter J, Jick H. Addiction rare in patients treated with narcotics. NEJM 1980;302:123

The role of Big Pharma: Accused of causing $\frac{1}{2}$ million deaths



The 19th wealthiest family in the US with a fortune of \$13 billion in 2016

Chemistry of fentanyl derivatives

C_.H

R.

Replacement of nitrogen atom for carbon

R,-

 R'_3

R-

R:

Replacement of 4-N benzene ring for substituted aromatic (heterocyclic) and non-aromatic groups

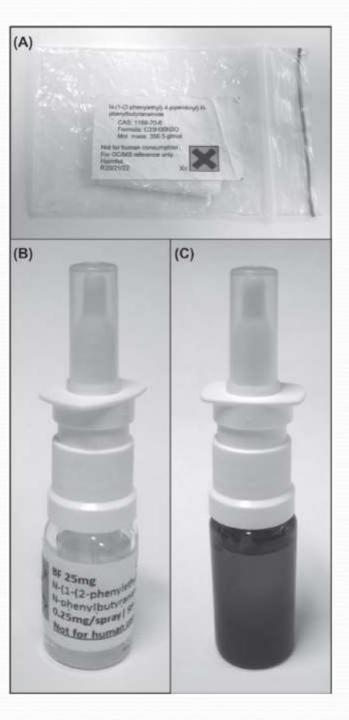
Insertion of substituents into the second, third and fourth position of piperidine ring

Replacement substituents at nitrogen atom, as well as its replacement of nitrogen atom for oxygen, sulfur or carbon

> Introduction of different substituents into the first and second position of ethylene linking group

Fusion of the propionylanilido group to the orto- position of anilido phenyl ring

Replacement of carbonyl group for thiocarbonyl or methylene group


> Replacement of propionyl group for other acyl substituents

Synthesis of open-chain structures Replacement of piperidine ring for pyrrolidine, azepine and other heterocyclic rings

Introduction of substituents into benzene ring. Replacement of benzene ring for other (heterocyclic) groups

Presentation of illicitly produced designer fentanyls

25 mg butyrfentanyl labeled bottles, each spray yields 0.25 mg and the content is sufficient for 95-105 puffs.

The usual presentation of opioid overdose

1. Respiratory depression

2. Miosis

3. Stupor

4. Hepatic injury from acetaminophen or hypoxemia

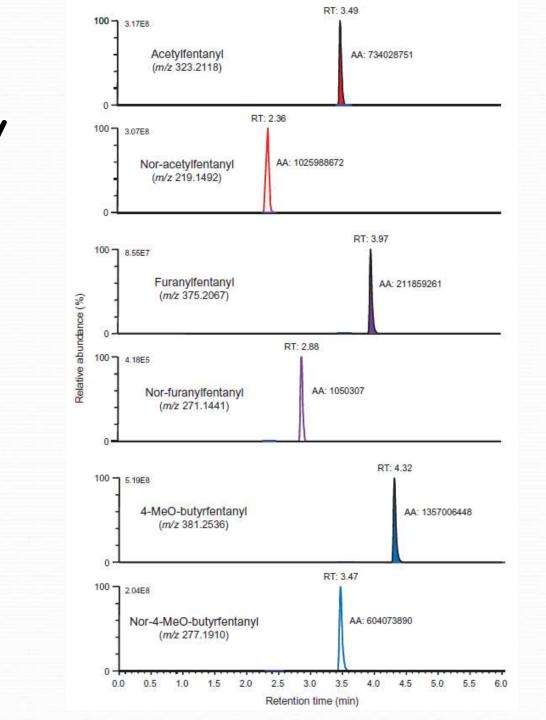
5. Myoglobinuric renal failure

6. Rhabdomyolysis

7. Absent or hypoactive bowel sounds

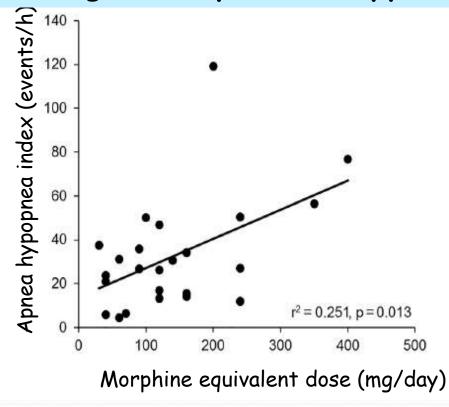
8. Compartment syndrome

9. Hypothermia


10. Possible presence of one or more fentanyl patches

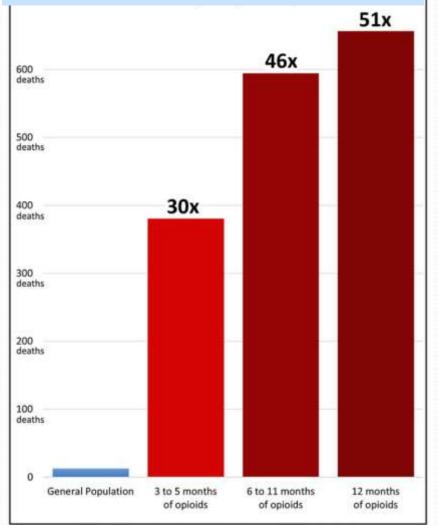
Boyer EW. NEJM 2012

All opioids produce a similar toxidrome in excessive dosing.


SpO2 and RR are surrogate indicators of ventilatory drive but provide limited information on drug-related effects on ventilatory control

PaCO₂ and V_M are direct measures of ventilation but difficult to assess continuously

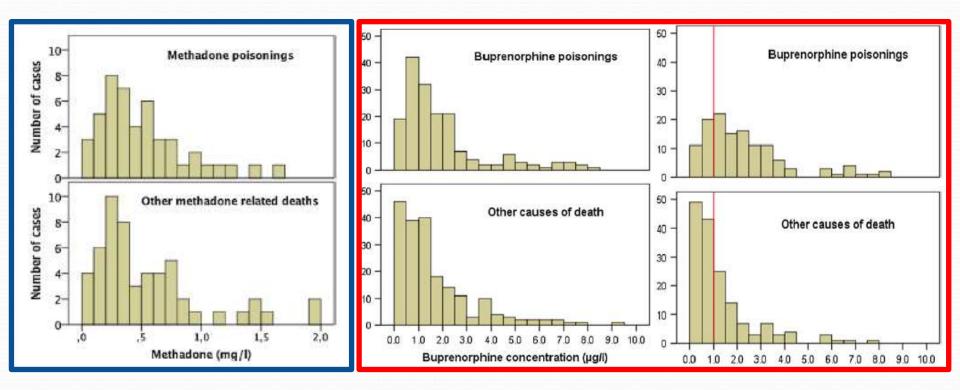
Identification by analytical techniques combining liquid chromatography + mass spectrometry (LC-HRMS, LC-MS/MS, LC-HRMS/MS)


Sleep disordered breathing and chronic respiratory failure in patients with chronic pain on long-term opioid therapy

Rose AR. J Clin Sleep Med 2014

DE REALIVATION 11 CANCULTRIANCAUSE

Risk of death from opioid overdose in relation to the treatment duration


AGO graph from Massachusetts Department of Public Health data

Risk factors for severe respiratory depression from prescription opioid overdose

Prescription opioid	SRD rate (%)	RR (descending)	95% CI
Tapentadol	2/2 (100)	27.0	3.9-185
Fentanyl	5/6 (83.3)	22.5	3.2-159
Oxymorphone	2/3 (66.7)	18.0	2.2-144
Methadone	59/116 (50.9)	13.7	2.0-95
Hydromorphone	4/9 (44.4)	12.0	1.5-94
Morphine	5/12 (41.7)	11.3	1.5-86
Oxycodone	40/124 (32.3)	8.7	1.3-60
Hydrocodone	9/31 (29.0)	7.8	1.0-58
Buprenorphine	2/7 (28.6)	7.7	0.8-73
Tramadol	3/12 (25.0)	6.8	0.8-58
Codeine	1/27 (3.7)	1.0 (ref)	

Fox LM. Addiction 2018

Opioid-attributed death: role of the dose?

Methadone-related deaths

Buprenorphine-related deaths

Häkkinen M. Forensic Sci Int 2012

Häkkinen M. Eur J Clin Pharmacol 2011

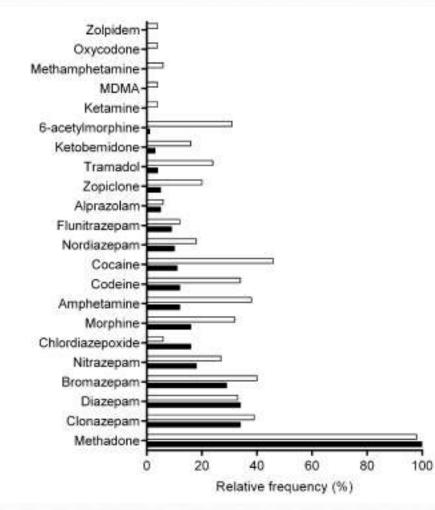
Could chest wall rigidity be a factor in the rapid death from illicit fentanyl abuse?

(N= 48)

Acute chest wall rigidity is a well-recognized complication

1- Deaths occurred with fentanyl in the therapeutic range (1-2 ng/ml) in apparent non-naive opiate abusers

questioning the onset of dose-dependent respiratory arrest as mechanism of death

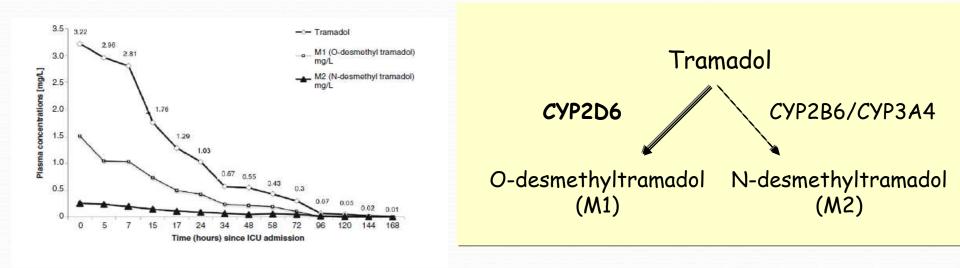

2- Lack of measurable norfentanyl in half of the cases despite high fentanyl - No correlation between elevated fentanyl and rises in norfentanyl

C

suggesting a very rapid death, consistent with acute chest rigidity

Burns G. Clin Tox 2016

Drug-drug interactions

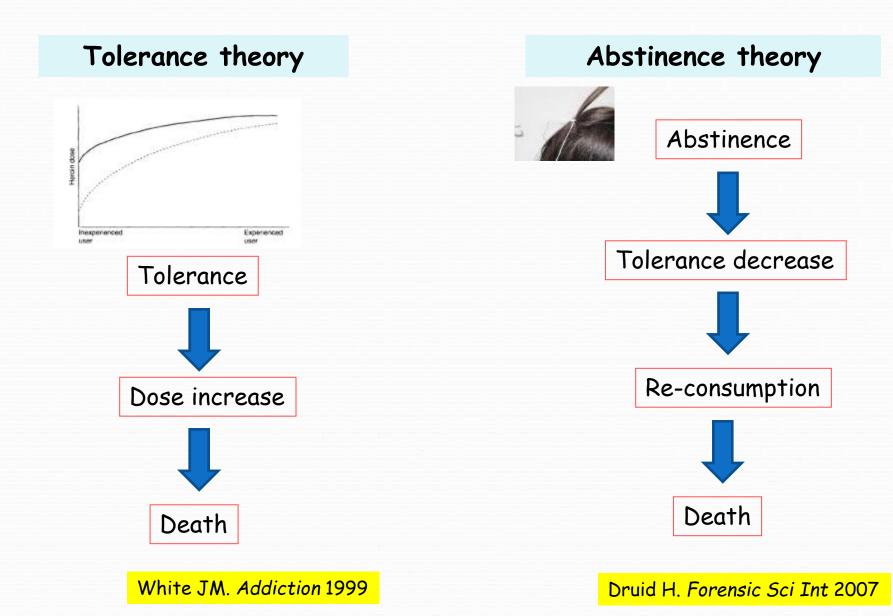


Abundance of hypnotics and drugs of abuse in blood (black) and proximal hair segments (white) in 99 methadone-related fatalities. Based on segmental hair analysis, continuous exposure of methadone suggested that reduced tolerance of methadone is not a critical factor among methadone-related fatalities.

In contrast, a high abundance of coingested CNS depressants suggested that adverse effects from drug-drug interactions are more important risk factors for fatal outcome

Nielsen MK. Forensic Sci Int 2015

Vulnerability related to gene polymorphism: Near-fatal tramadol cardiotoxicity in a CYP2D6 ultrarapid metabolizer



Ultrarapid metabolizer phenotype suggested by tramadol/M1 metabolic ratio
 Heterozygous for duplicated wt allele predictive of CYP2D6 ultrarapid
 metabolizer phenotype

+ Ketoconazole at inhibitory concentration of CYP3A/CYPB6 (200 ng/ml)

Elkalioubie A. Eur J Clin Pharmacol 2011

The role of tolerance and abstinence

Naloxone: pharmacology properties

- Pure opioid antagonist at mu (high affinity), kappa, and delta receptors
- No agonist properties
- High first-pass metabolism (poor oral bioavialability)
- Short-plasma half-life 50 min
- Duration of action: 1-4 h
- Administered IV, IM, SC, IN

Widely used to reverse opioid toxicity Dose-dependent reversal of opioid agonist effects High dose may precipitate acute opioid withdrawal syndrome

Comparison of heroin, methadone and BUP overdoses

	Heroin (N = 26)	Buprenorphine (N = 39)	Methadone (N = 19)	р
Suicide	12%	18%	58%	0.0007
Co-ingestions	73%	95%	89%	0.04
Glasgow Coma Score	5 [3 - 9]	7 [4 - 10]	4 [3 - 10]	0.1
Respiratory rate	10 [6 - 13]	12 [8 - 15]	10 [6 - 13]	0.4
SpO ₂ (%)	82 [64 - 95]	94 [87 - 98]	91 [82 - 97]	0.05
pH	7.29 [7.17-7.34]	7.35 [7.24-7.38]	7.33 [7.23-7.42]	0.07
PaCO₂ (mmHg)	51 [45 - 55]	50 [45 - 66]	50 [36 - 57]	0.7
Mechanical ventilation	46%	41%	47%	0.6
Response to naloxone	81%	0%	71%	<0.0001
Response to flumazenil	0%	87%	60%	0.02

Mégarbane B. JSAT 2010

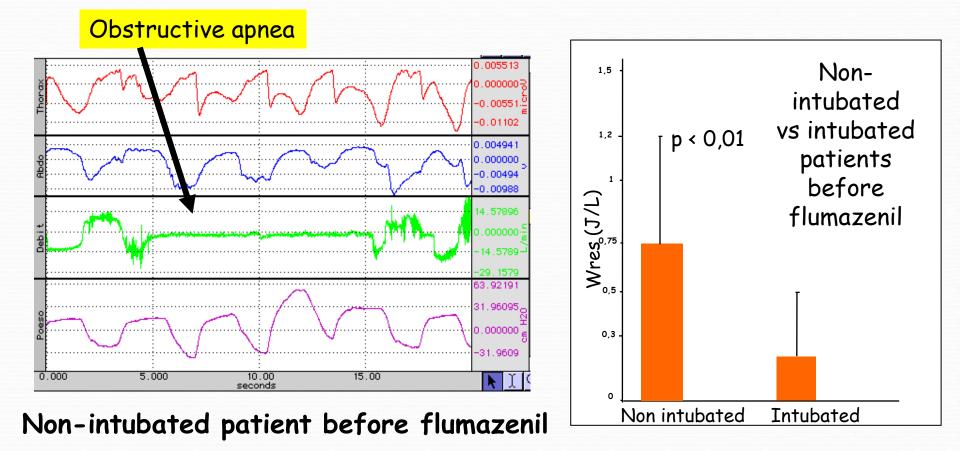
Preventing opioid overdose deaths With take-home naloxone

 Death from opioid overdose occurs frequently at home, 1-3 h after exposure and often in the presence of bystanders (80%)
 BCLS by bystanders are comparely not sufficient.

BCLS by bystanders are generally not sufficient

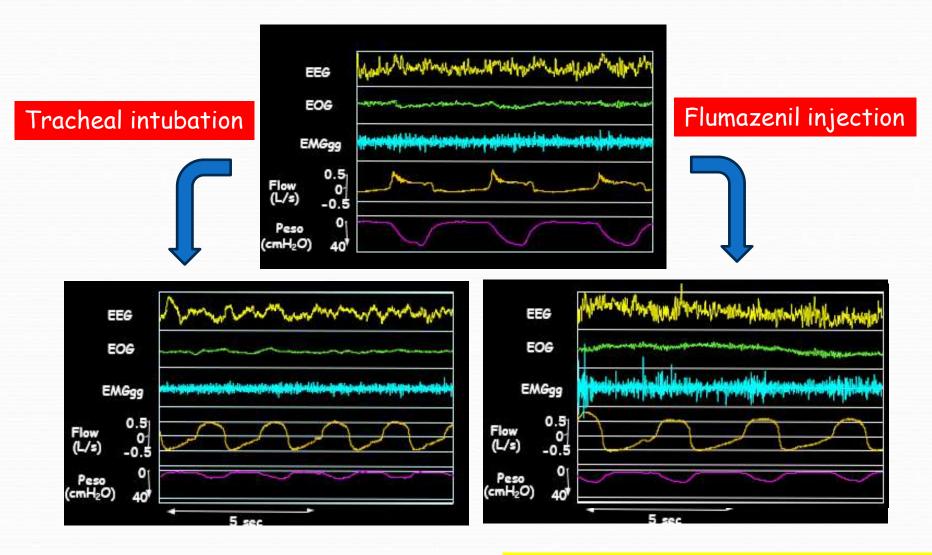
Number of programs of naloxone distribution	Number of naloxone vials distributed over one year	Number of program participants	Number of reported opioid overdose reversals
136	140 053	152 283	26 463

Wheeler E. MMWR Morb Mortal Wkly Rep 2015



Peripheral respiratory depression

Mechanisms of respiratory insufficiency in coma involving benzodiazepines



Increase in the resistive load and respiratory work

Gueye P. J Toxicol Clin Toxicol 2002

Obstructive mechanism of respiratory insufficiency in benzodiazepine-induced coma

Gueye P. J Toxicol Clin Toxicol 2002

BUP / BZD interaction

Hypothesis: PD interaction with addition of different physiological effects

Mégarbane B. Forensic Int Sci 2011

Benzodiazepines :

- Alteration of Upper Airways Dilators (GABA _A)

→ hypopnea, obstructive apnea

- Diaphragmatic dysfunction

Increase of the workload of breathing

Opioids

- Decrease of the ventilatory response to

- Inspiratory load
- Hypoxia
- Hypercapnia

Depression of the ventilation centres

The combination of effects may result in respiratory depression and death

Should we use flumazenil in presumed toxic coma? (1)

atient's awakening	umazenil n/N			Weight %	RR (random) 95% Cl	
O'Sullivan 1987 ²⁴	19/31	6/29		30.24	2.96 [1.38,	6.37]
Spivey 1993 ²⁶	48/87	10/83	-	43.24	4.58 [2.48,	
Hojer 1990 ¹⁰	27/53	3/52		15.29	8.83 [2.85,	
Ritz et al.22	6/13	0/10	-	2.75	10.21 [0.64,	
Weinbroum 1996 ¹⁷	14/17	1/14		- 5.72	11.53 [1.72,	
Barnett 1999 ²⁵	19/41	0/22		→ 2.76	21.36 [1.35,	337.67]
Total (95% CI)	242	210	•	100.00	4.99 [3.14,	7.92]
Total events: 133 (Flumazer	nil), 20 (Placet	00)				
Test for heterogeneity: Chi ²	= 5.46, df = 5	(P = 0.36), l ² = 8.4%				
Test for overall effect: Z = 6	.82 (P < 0.000	01)				
		0.01	0.1 1 10	100		
		Equation	Placebo Eavoure	lumozonil		

Favours Placebo Favours Flumazenil

CGS impro	ovement	umazenil Mean (SD)	N	Control Mean (SD)	S	MD (fixed) 95% Cl	Weight %	SMD (fixed) 95% Cl
Barnett 1999	19	11.80(4.10)	22	8.60(3.60)		-	45.87	0.82 [0.18, 1.46]
Spivey 1993	46	12.25(2.56)	10	9.50(2.75)		-	37.51	1.05 [0.34, 1.76]
Ritz 1988	13	10.70(2.70)	10	5-50(1.80)		-	16.62	2.13 [1.06, 3.19]
Total (95% CI)	80		42			•	100.00	1.12 [0.69, 1.56]
Test for heterogeneity: C Test for overall effect Z =								
					-10 -5	0 5	10	
					Favours contr	ol Favours Fl	umazenil	

Ngo AS. Resuscitation 2007

Should we use flumazenil in presumed toxic coma? (2)

	Study or sub-category	Flumazenil n/N	Control n/N	RR (fixed) 95% Cl	Weight %	RR (fixed) 95% Cl
	01 Major (Fits) Weinbroum 1996 Ritz 1988	0/17 0/13	0/14 0/10			Not estimable Not estimable
Major ADR	O'Sullivan 1987 Knudsen 1988 Hojer 1990 Barnett 1999	0/31 0/16 0/53 0/19	0/29 0/16 0/52 0/22			Not estimable Not estimable Not estimable Not estimable
	Spivey 1993 Subtotal (95% CI) Total events: 1 (Flumazenil), 0 (Test for heterogeneity: not appli Test for overall effect; Z = 0.65 (1/97 236 Control) cable	0/83 226		2.33 2.33	2.86 [0.12, 69.33] 2.86 [0.12, 69.33]
	02 Minor events (Anxiety)	8				
	Ritz 1988	0/13	0/10		10-2-10-2-2	Not estimable
	Knudsen 1988	6/16	4/16		10.10	1.50 [0.52, 4.32]
Anniatu	O'Sullivan 1987	3/31	1/29		4.70	2.81 [0.31, 25.48]
Anxiety	Weinbroum 1996	5/17	1/14 0/83		4.98	4.12 [0.54, 31.26]
· · · · · · · /	Spivey 1993	3/67	0/63		2.33	6.68 [0.35, 127.42]
	Hojer 1990	3/53			2.29	6.87 [0.36, 129.81]
	Subtotal (95% CI)	217	204		32.48	2.84 [1.28, 6.30]
	Total events: 20 (Flumazenii), 6 Test for heterogeneity: ChP = 2. Test for overall effect: Z = 2.57 (20, df = 4 (P = 0.70), P = 05	6			
	03 Minor events (vomiting) Weinbroum 1996	0/17	0/14			Not estimable
	Ritz 1988	0/13	0/10			Not estimable
	Knudsen 1988	0/16	0/16			Not estimable
Vomisiting	Hojer 1990	1/53	0/52		2.29	2.94 [0.12, 70.67]
vomising	O'Sullivan 1987	4/31	1/29		4.70	3.74 [0.44, 31.55]
	Spivey 1993	3/87	0/83		2.33	6.68 [0.35, 127.42]
		217	204		9,32	4.28 [0.95, 19.35]
	Subtotal (95% CI)		204		9.34	4.29 [0.95, 19:35]
	Total events: 8 (Flumazenil), 1 (Test for heterogeneity: Chi ² = 0. Test for overall effect: Z = 1.89 (16, df = 2 (P = 0.92), F = 05	6			
	04 Other side effects					
	Weinbroum 1996	1/17	0/14 -		2.48	2.50 (0.11, 56.98)
	Knudsen 1988	3/16	1/16		4.54	3.00 [0.35, 25.87]
Minor ADR	Spivey 1993	33/87	9/83		41.87	3.50 [1.78, 6.86]
MINOR ADR	O'Sullivan 1987	5/31	1/29	See Sec.	4.70	4,68 [0.58, 37.68]
	Hojer 1990	4/53	0/52		2.29	8.83 (0.49, 160.07)
	Subtotal (95% CI)	204	194		55.88	3.73 [2.07, 6.73]
	Total events: 46 (Flumazenii), 1 Test for heterogeneity: Chi ² = 0. Test for overall effect: Z = 4.38 (1 (Control) 52, df = 4 (P = 0.97), P = 0%				ALL DATES STOR
	Total (95% Cl) Total events: 75 (Flumazenii), 11		828	•	100.00	3.47 (2.22, 5.43)
	Test for heterogeneity: Chi ² = 3. Test for overall effect: Z = 5.45 (1%			
	()		0	1 0.2 0.5 1 2 5	10	
			Fav	ours Flumazenil Favours Pl	acebo	

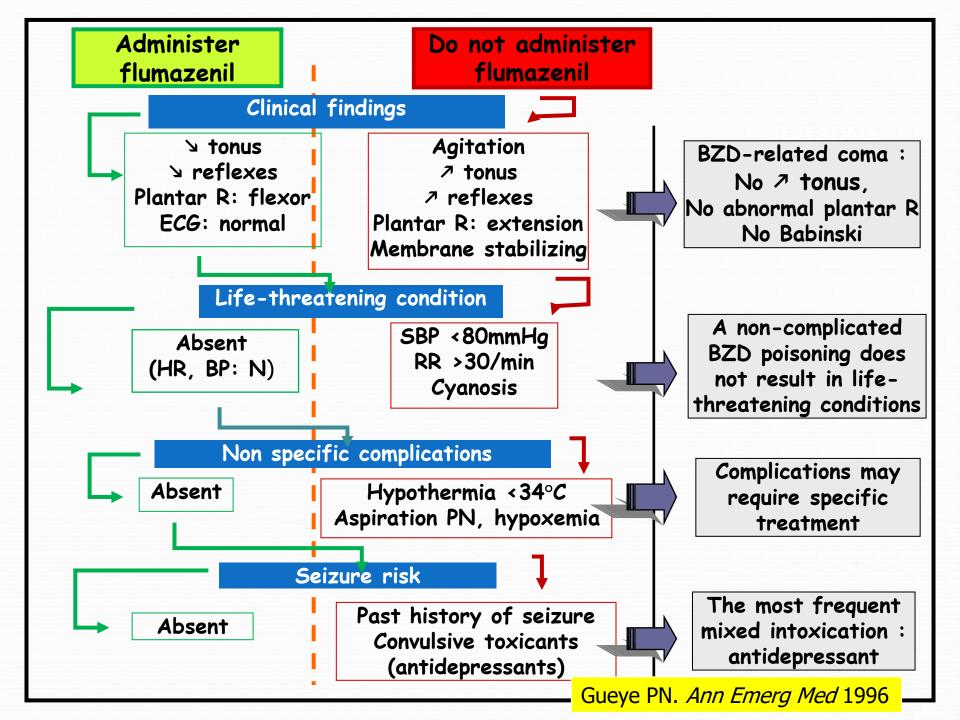
Ngo AS. Resuscitation 2007

Flumazenil does not increase the global costs of patient management in the ICU

Factor	Flumazenil	Placebo	p Value
Number	19	22	
Emergency room	244 ± 106	276 ± 111	NS
Nursing	140 ± 59	151 ± 51	NS
ER physician fee	93 ± 29	98 ± 33	NS
Drug	101 ± 57	5 ± 2	<.001
Inpatient	402 ± 1920	1258 ± 1100	NS
Medical consult	148 ± 77	109 ± 27	NS
ICU consult	400 ± 71	276 ± 63	NS
ICU	327 + 2410	1245 ± 490	Ь
Total cost	1524 ± 2520	1432 ± 1420	NS

Barnett R. Crit Care Med 1999

Guidelines for routine flumazenil use


- 0.1 to 0.3 mg IV bolus
- Titration to avoid withdrawal syndrome
- More elevated dosage regimen if multi-drug poisoning: up to 2 mg bolus
- Efficient in poisonings with assimilated molecules (zopicolone and zolpidem)
- Caution if tricyclic antidepressants or carbamazepine co-ingestion
- Add bolus or continuous infusion (0.3-0.5 mg/h) to maintain consciousness
- Significant improvement in respiratory conditions to avoid tracheal intubation
- Debated utilization in ethanol poisoning or liver encephalopathy
- Efficient and safe utilization in elderly, children, babies, pregnant women

Weinbroum AA. Drug Safety 1997

Flumazenil in children:

- 10-20 µg/kg IV bolus
- Experience (N=83; 2 years [3 months,12 yrs]): excellent tolerance, no convulsion

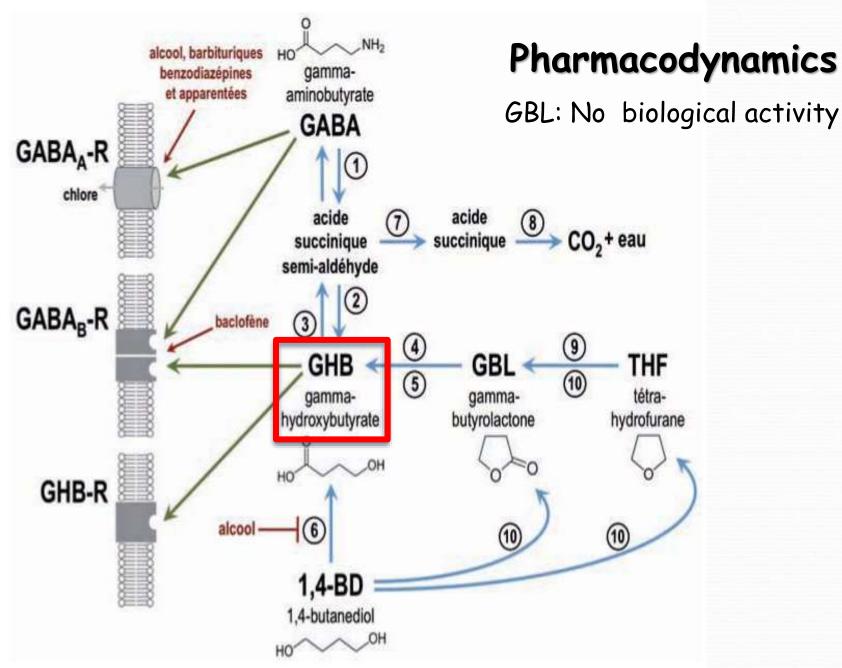
Kreshak AA. Pediatr Emerg Care 2012

The GHB threat

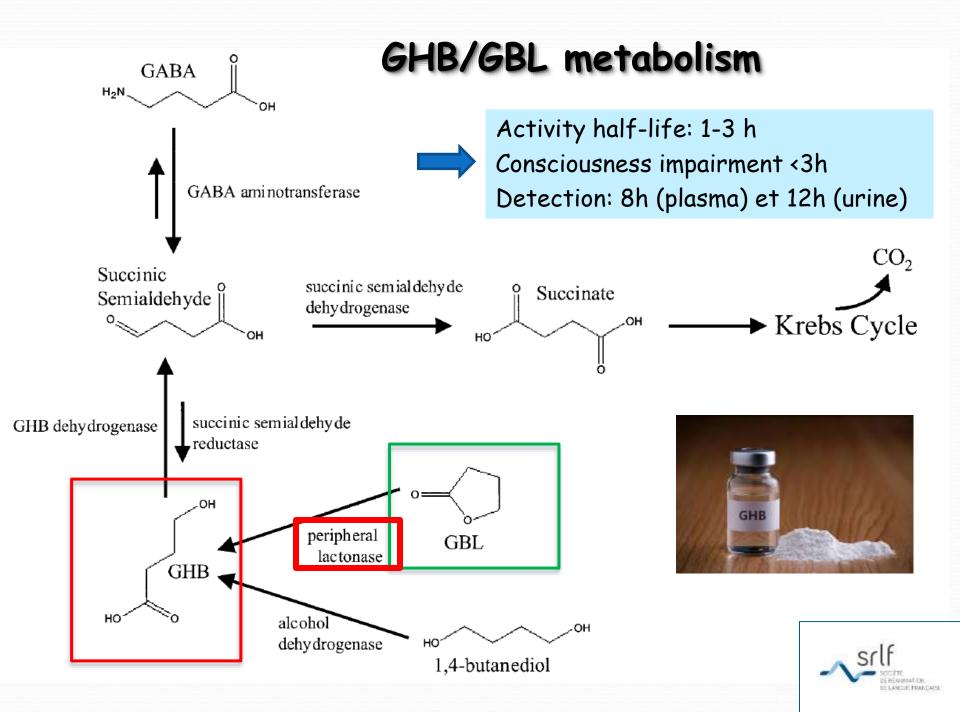
Recreational GHB/GBL use and overwhelming issue of drug-facilitated sexual assaults

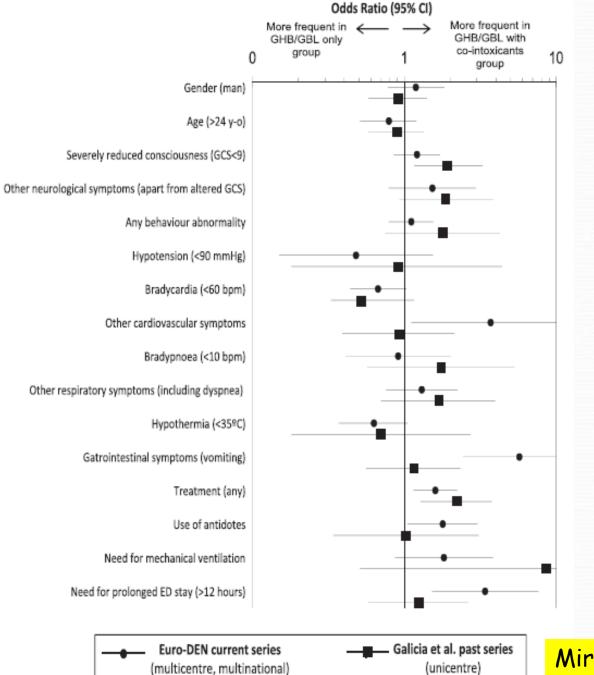
- GHB: colorless and odorless slightly salty/bitter lliquid
- GBL: colorless oily water-soluble liquid
- Dosage: 2-5 g / dose with 1-3h interdoses, difficult calibration

Toxicity attributed to GHB


Dose- and concentration-effect relationships

Dose (mg/Kg)	Symptoms
10	Amnesia, myorelaxation, hypotonic, dizziness, myoclonus
20 - 30	Euphoria followed by sleepiness
30 - 50	Sedation, nausea/vomitig
50 - 100	Non-reactive coma (G-hole), respiratory depression, seizures, bradycardia, hypotension, nystagmus, myosis/mydriasis


- Tight therapeutic index
- Inter-individual variability
- Tolerance development if repeated use
- □ Aspiration, ≌K+, Ϡ WBC, ϠCK, AVB
- 🖵 Withdrawal: 1-6h, peak 24h, duration 14d

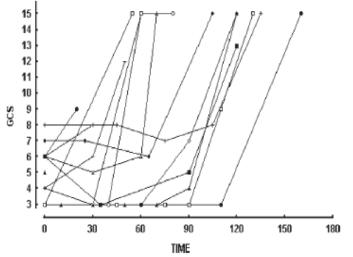


Shep LJ. Clin Tox 2012

Endogenous GHB (blood < 5 μ g/mL and urine < 10 μ g/mL)

Mixed GHB/GBL poisonings

Miro O. Tox Lett 2017


Rapidity of awakening in GHB poisoning

21 participants to 6 rave parties admitted with GCS ≤ 8

15/21: positive GHB screening Plasma [GHB] : 212 μg/ml (112 - 430) 14/15: multi-drug ingestions

GCS ≤8 during 90 min (30 - 105) GCS change from ≤8 to ≥12: <u>30 min</u> (10 - !

Patient subgroup with GCS =3: Remained at GCS 3 during <u>60 min</u> (30 - 110) GCS change from 3 to 15 in <u>30 min</u> (20 - 60)

No patient was further intubated

Van Sassenbroek D. Clin Tox 2007

Take home messages

- Aspiration pneumonia is common in the comatose patient. Risk factors include impairment of swallowing & alteration in consciousness. Aspiration pneumonia is associated with severity, prolonged ICU stay, and increased mortality.
- Drug-induced respiratory depression is frequent. CNS depression attributed to opioid and GHB represents a growing concern. Diagnosis at the bedside is based on respiratory rate, SpO₂ and blood gas. Management is supportive.
- In patients with GCS <8, tracheal intubation should not be systematic. Decision should take into account the drug properties and its PK as well as the level of encephalopathy and respiratory/circulatory findings.
- Antidotes (naloxone and flumazenil, according to the toxidrom) can avoid intubation in selected patients. Their use is safe if respecting contra-indications.
- Adjunctive role of the physiotherapist to prevent and treat complications resulting from drug-related neuro-respiratory effects