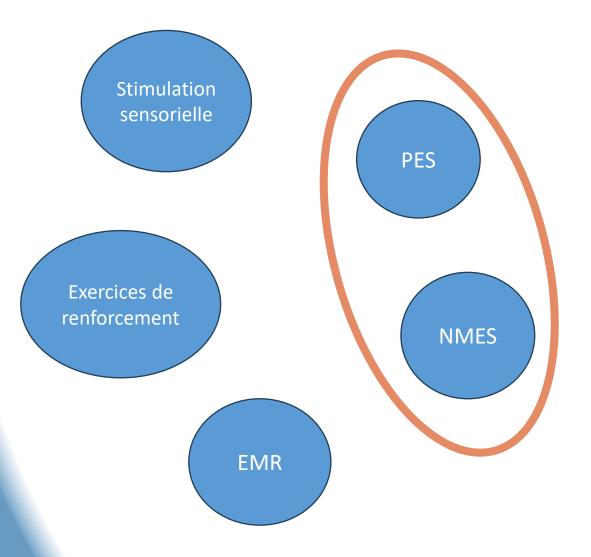


Stratégies innovantes de gestion des troubles de la déglutition

Stimulation électrique des VAS

Swallowing network – ICU-related factors



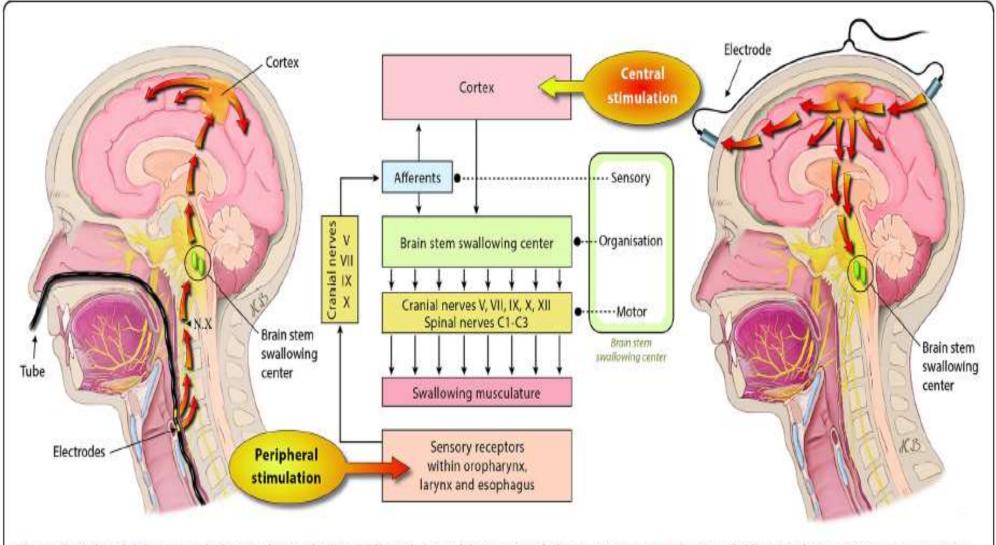
Zuercher P. Critical Care (2019)

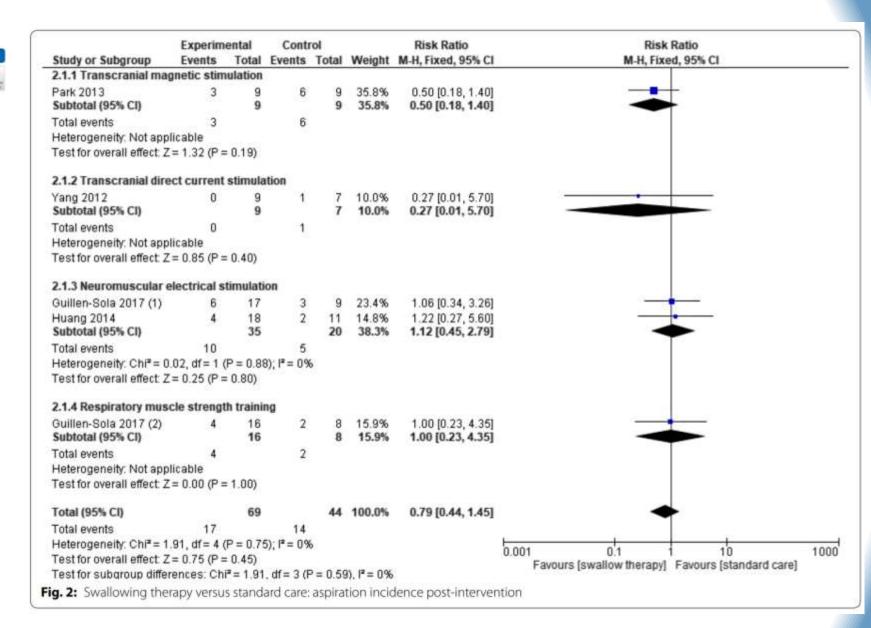
Modalités rééducation

Stimulation non corticale

Stimulation corticale

Stimulation SNC - Mécanisme d'action



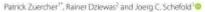

Fig. 3 Peripheral (pharyngeal electrical stimulation, PES) and central (transcranial direct current stimulation, tDCS) stimulation strategies targeting the swallowing network. Reprinted with permission from the authors [140], copyright Heike Blum, University Hospital Münster, Germany

SYSTEMATIC REVIEW

Interventions for oropharyngeal dysphagia in acute and critical care: a systematic review and meta-analysis

Sallyanne Duncan¹¹, Daniel F. McAuley¹, Margaret Walshe², Jennifer McGaughey³, Rohan Anand¹, Richard Fallis⁴ and Bronagh Blackwood¹

SYSTEMATIC REVIEW


Interventions for oropharyngeal dysphagia in acute and critical care: a systematic review and meta-analysis

Sallyanne Duncan¹¹, Daniel F, McAuley¹, Margaret Walshe², Jennifer McGaughey³, Rohan Anand¹, Richard Fallis⁴ and Bronagh Blackwood¹

Internative Core Mind https://doi.org/10.1007/s00134-020-06189-x

CORRESPONDENCE

Dysphagia in critical care: focus on therapeutical interventions

8: 2023 Samper Writing Grahlif Germany, port of Springer Nature

Intensive Care Med. https://doi.org/10.1007/s00134-031-96381-7

CORRESPONDENCE

Swallowing therapy compared to standard care may not have had a beneficial effect on the incidence of pneumonia for patients in acute care. Author's reply

Sallyanne Duncan¹¹0, Daniel F. McAuley¹, Margaret Walshe² and Bronagh Blackwood¹

CORRESPONDENCE

Swallowing therapy compared to standard care may not have had a beneficial effect on the incidence of pneumonia for patients in acute care

Fleng Zheng¹, Xiangrong Chen¹, Janleng Zhou¹, Welpeng Hu¹¹ and Boris Krischek¹

- 2% population médico-chirurgicale
 - Les données relatives à ces populations sont rares
 - Pas d'analyse comparative AVC/médico-chirurgicale

NMES

- Huang et al :
 - NMES 3/sem
 - AVC depuis 24 jours en moyenne
- Guillen et al :
 - Stimulation des muscles supra-hyoïdiens uniquement
- Stimulation corticale : seulement 1 étude pour chaque technique

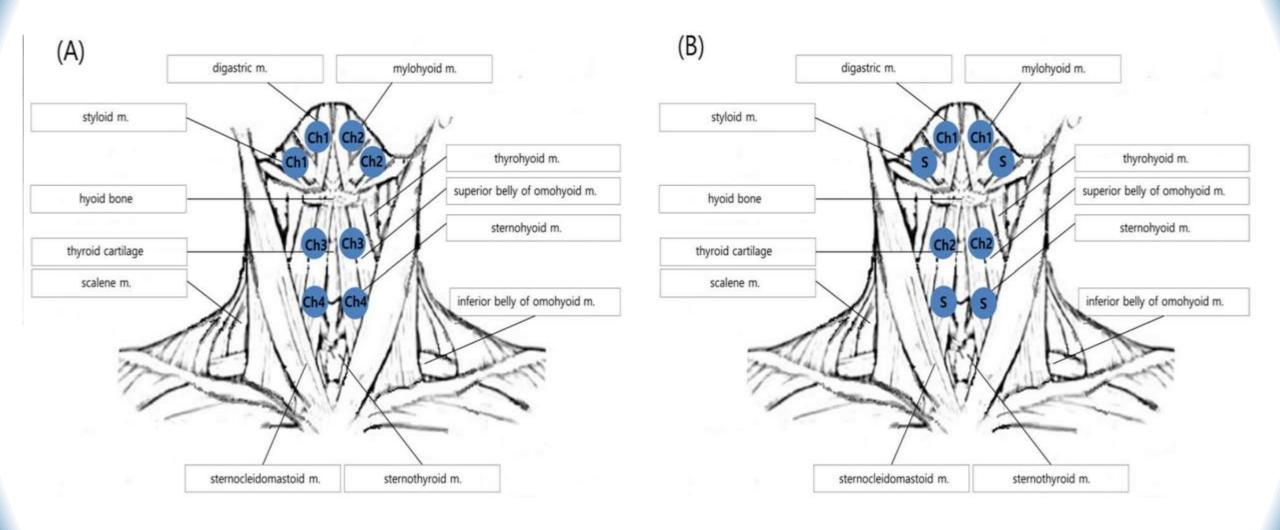
Stimulation électrique

NMES

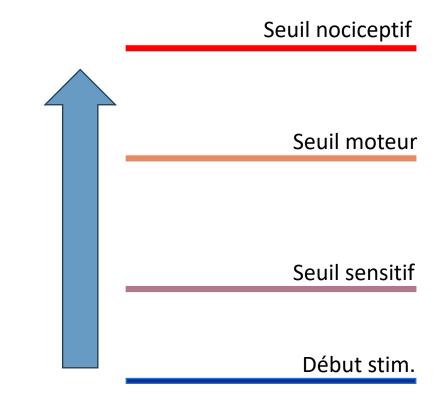
Principes

- Impose une contraction via un stimuli électrique
- Utilisé dans d'autres populations et évalué ++ dans la dysphagie, notamment neurogénique
- Contrindications:
 - Etat de la peau
 - Chirurgie récente
 - Instabilité osseuse
 - Contre-indications « copiées-collées »
- Cibles :
 - Renforcement musculaire
 - Le réflexe de déglutition
 - Régulation de l'excitabilité corticale
 - Sensibilité de contraction musculaire
 - Renforcement input sensoriel oropharynx

Matériel

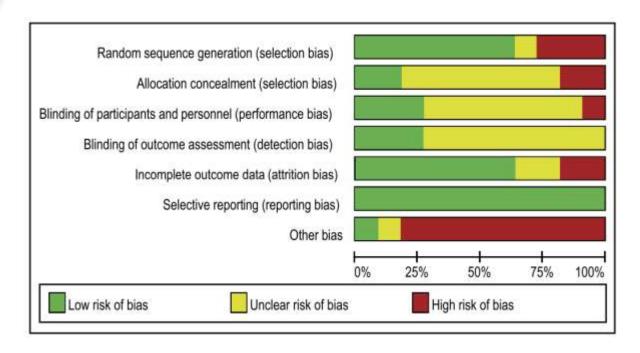

ack Dura-Stik cick Dura-Stic Dura-Stick I Dura-Stick I tick Dura-Stic tick Dura-Stic Dura-Stick [Dura-Stick I tick Dura-Stic tick Dura-Stic Qura-Stick Qura-Stick cick Dura-Stic ack Dura-Stic Di ra-Stick I Dyra-Stick I i & Dura-Stic it & Dura-Stic Dura-Stick [Dura-Stick I tick Dura-S tick Dura-Stic Qura-Stick Qura-Stic

Placement des électrodes



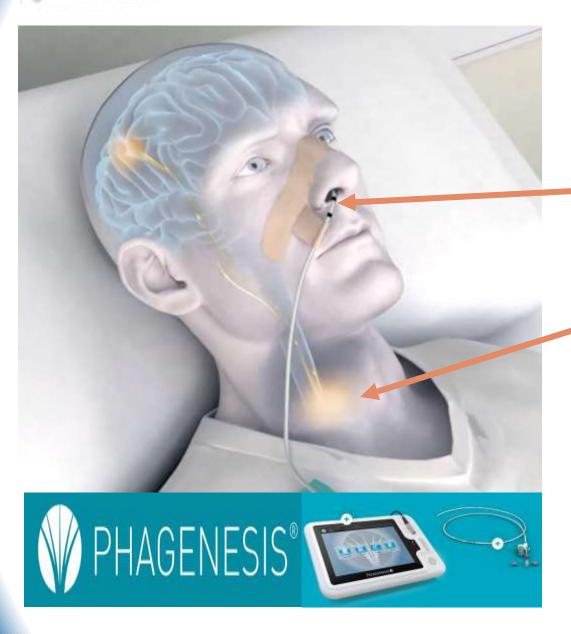
Kyonung-Ho et al. JNE&R (2021) Humbert (2005); Sun (2020)

Méthode


- Données hétérogènes ++
- Paramètres :
 - 10 HZ 120 Hz
 - 300-700 µs
 - Intensité ajustée en fonction de l'objectif?
- Durée et récurrence
 - 3-5 séances / semaine
 - 1-2 séances / jour
 - 30-60 minutes

Effects of Transcutaneous Neuromuscular Electrical Stimulation on Swallowing Disorders

A Systematic Review and Meta-Analysis


- Efficacité semble supérieure quand :
 - Stimulation SH+IH ou IH > SH
 - Durée < 45'

- 585 patients
- Pas d'effet indésirable grave
- Deux études déclarent des épisodes douloureux
 - Douleur transitoire s'arrêtant à la fin de l'application de NMES
 - Douleur s'arrêtant avec la modification de l'intensité de la NMES

Méthode

- Cathéter inséré par le nez : profondeur en lien avec la taille
- Zone colorée sur la surface extérieure visible au niveau des narines
- Paire d'électrodes de l'anneau de traitement sur la surface extérieure du cathéter
- Des essais augmentant 1mA pour détecter seuil de perception (PT) et maximal toléré (MT)
- Intensité calculée par la station : PT+0,75 * (MTT-PT)

Pharyngeal electrical stimulation for early decannulation in tracheotomised patients with neurogenic dysphagia after stroke (PHAST-TRAC): a prospective, single-blinded, randomised trial

Rainer Dziewas, Rebecca Stellato, Ingeborg van der Tweel, Ernst Walther, Camplus JWerner, Tobias Rosun, Giuseppe Citeria, Mitju Jandi, Michael Friedrichs, Katju Notzel, Milan R Yoska, Satish Mistry, Shuheen Hamdy, Susan McGowan, Tobias Warnecke, Paul Zwitting, Philip M Bath, an behalf of the PHAST-TRAC investigators*

- 49% de patients (vs 9% groupe contrôle)
- 57% patients « décanulables »
- Durée de séjour moindre chez les répondants

- Temps randomisation-début traitement
- Durée de ventilation mécanique
- Myopathie et polyneuropathie diminuant le potentiel de la technique
 - Impact nerfs crâniens
 - Voies afférentes sensorielles
- Seuils stimulation plus élevées

 2^{ème} cycle de stimulation efficace chez les « non-répondeurs »

Autres études similaires

STEPS study

PHADER study

Pharyngeal Electrical Stimulation for Treatment of Dysphagia in Subacute Stroke

A Randomized Controlled Trial

Philip M. Bath . Polly Scutt, Jo Love, Pere Clavé, David Cohen, Rainer Dziewas, Helle K. Iversen, Christian Ledl, Suzanne Ragab, Hassan Soda, Anushka Warusevitane, Virginie Woisard and Shaheen Hamdy and on behalf of the Swallowing Treatment Using Pharyngeal Electrical Stimulation (STEPS) Trial Investigators

- AVC moins sévère
 - (alimentation partielle à l'inclusion)
- Inclus plus tardivement
- Besoin ventilation mécanique nettement inférieur
- Stimulation d'intensité supérieure
- Evalués plus tardivement
 - (> récupération naturelle)
 The PhINEST study Pharyngeal ICU Novel Electrical Stimulation Therapy: Study protocol of a prospective, multi-site, randomized, sham-controlled, single-blind (outcome assessor-blinded) study


Part of THE LANCET Discovery Science

Pharyngeal electrical stimulation for neurogenic dysphagia following stroke, traumatic brain injury or other causes: Main results from the PHADER cohort study

Philip M. Bath A Set Lisa J. Woodhouse • Sonja Suntrup-Krueger • Rudolf Likar • Markus Koestenberger • Anushka Warusevitane • et al. Show all authors

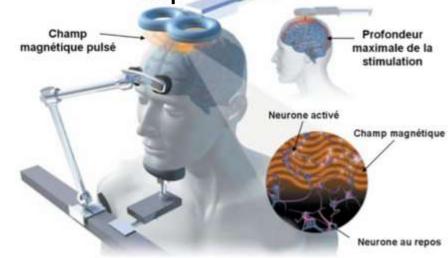
- Population autre que AVC
 - TBI
 - CIP
- Moins de récupération si TBI
 - Lésion plus large (nécessite plus d'un cycle ?)
 - Altération plasticité ?
 - Traitement démarré « tardivement »

ClinicalTrials.gov Identifier: NCT03840395

rTMS - tDCS

Stimulation corticale

- Repose sur le principe de la neuroplasticité
 - Synaptogenèse
 - La réorganisation, le renforcement, la suppression des réseaux.
- Les plus couramment utilisées sont la stimulation magnétique transcrânniene (TMS) et la stimulation électrique transcrânienne (à courant directe) (tDCS)



rTMS

- Modulation de l'excitabilité corticale via champ magnétique
 - Baisse fréquence (≤1Hz) réduit l'excitabilité
 - Haute fréquence (≥5Hz)— augmente l'excitabilité

• Essor entre 2003 et 2008 où plus de 4mil articles ont été publiés

- Déjà utilisé pour :
 - Douleurs neuropathiques et dépression (niveau de preuve A)
 - Evaluation d'autres affections psychiatriques et neurologiques

rTMS (2)

- Aucune préparation nécessaire
- Sans anesthésie
- Peut induire des migraines, épilepsie, brûlures de la peau si mauvaise utilisation
 - → Recommandations de sécurité aucun EIG
- Sensation patient :
 - Gêne légère / contraction des muscles du visage
- Contre-indications

tDCS

- Stimulation directe transcrânienne via un faible courant électrique
 - 2 électrodes placés sur la zone d'intérêt
 - Anode → Hyperexcitabilité → Diminue le seuil de dépolarisation
 - Cathode → Diminue l'activité → Augmente le seuil de dépolarisation
- Différentes modalités :
 - Divers paramètres (fréquences, durée)
 - Différentes zones ciblées

- Stimulation anodique du côté lésé
- Stimulation cathodique côté sain → Diminue l'inhibition transcallosale → W côté lésé

tDCS (2)

• Aucun effet délétère objectivé

• Contre-indications : pacemaker, implants métalliques

- Sensation patient :
 - Picotements durant les premières secondes
 - Flash de lumière si allumée ou arrêtée brusquement

Transcranial direct current stimulation for post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials

Sarah Marchina¹ · Jessica M. Pisegna² · Joseph M. Massaro³ · Susan E. Langmore² · Courtney McVey¹ · Jeffrey Wang¹ · Sandeen Kumar¹

Table 1 Summary of included trials investigating tDCS in patients	with post-stroke dysphagia
---	----------------------------

Pc Re

Xin W

Author	Sample size	Mean age (years)	Sex	Stroke type	Intervention	Stimulation site	Duration of treatment	Dosage	Electrode size (cm ²)	Current density	Main outcome measure	Time post stroke/to treatment (days)	Concurrent exercises/ therapy
Kumar et al. [37]	14	70	7 F 7 M	IS	Anodal to unaffected	inferior sen- sorimotor cortex and premo- tor brain regions	30 min 5 days	2 mA	15	0.133	DOSS	4.03	Yes
Yang et al. [69]	16	71	6 F 10 M	IS	Anodal to affected	Pharyngeal motor cortex	20 min 10 days	1 mA	25	0.04	FDS	25.9	Yes
Shigematsu et al. [60]	20	65.8	7 F 13 M	IS and ICH	Anodal to affected	Pharyngeal motor cortex	20 min 10 days	1 mA	35	0.029	DOSS	87.5	Yes
Ahn et al. [1]	26	64	11 F 15 M	IS	Anodal to both hemi- spheres	Pharyngeal motor cortex	20 min 10 days	1 mA	25	0.04	DOSS	357	Yes
Pingue et al. [52]	40	65.25	20 F 20 M	IS and ICH	Anodal to affected, Cathodal to unaffected	Pharyngeal motor cortex	30 min 10 days	2 mA	25	0.08	DOSS and PAS	29.5	Yes
Suntrup et al. [64]	59	68.05	25 F 34 M	IS	Anodal to unaffected	Pharyngeal motor cortex	20 min 4 days	1 mA	35	0.029	FEDSS, DSRS and FOIS	4.85	Yes
Kumar et al. (under review)	42	71	17 F 25 M	IS	Anodal to unaffected	Pharyngeal motor cortex	20 min×2 5 days	2 mA	15	0.133	PAS and FOIS	3.6	Yes

F female, M male, IS ischemic stroke, ICH intracerebral hemorrhage, mA milliampere, DOSS dysphagia outcome and severity scale, FDS functional dysphagia scale. FEDS fiberoptic endoscopic dysphagia severity scale, PAS penetration-aspiration scale, DSRS dysphagia severity rating scale, FOIS functional oral intake scale

	Conventional dysphagia therapy	59.8 (11.8)	15			100
Park et al. (2017)	Sham rTMS	69.6 (8.6)	7/4	The bilateral hemisphere, mylohyoid motor cortex;	10 Hz, 90%MT, 10 min, 10 times	VDS, PAS
	Bilateral rTMS	60.2 (13.8)	8/3			
	Unilateral rTMS	67.5 (13.4)	8/3	The ipsilesional hemisphere, mylohyoid motor cortex;		
Du et al. (2016)	Sham rTMS	58.83 (3.35)	6/6	The ipsilesional hemisphere, mylohyoid motor cortex;	3 Hz, 90%MT, 1200 pulses, 5 times	SSA, BI, DD, adverse effects, dropout rate
	High-frequency rTMS	58.2 (2.78)	13/2			The SO THOM AND
	Low-frequency rTMS	57.92 (2.47)	7/6	The contralesional side, mylohyoid motor cortex;	1 Hz, 100%MT, 1200 pulses, 5 times	
Unluer et al. (2019)	Active rTMS	67.8 (11.88)	9/6	The contralesional side, mylohyoid motor cortex;	1 Hz, 90%MT, 1200 pulses, 5 times	PAS, adverse effects, dropout rate
	Conventional dysphagia therapy	69.31 (12.89)	7/6		With Spatia	
Tarameshlu et al. (2019)	Active rTMS	55.33 (19.55)	4/2	The contralesional side, mylohyoid motor cortex;	1 Hz, 120%MT, 1200 pulses, 5 times	MASA, FOIS
	Conventional dysphagia therapy	76.67 (5.92)	5/1			
Cabib et al. (2020)	Active rTMS	70 (8.6)	12	The contralesional side, pharyngeal sensory cortex:	5 Hz, 90%MT, 250 pulses, 1 time	PAS, MEP, adverse effects
	Sham rTMS	70 (8.6)	12			0907122024

Transcranial Magnetic Stimulation for Improving Dysphagia After Stroke: A Meta-Analysis of Randomized Controlled Trials

Yu-lei Xie $^{t.27}$, Shan Wang $^{t.2.37}$, Jia-meng Jia $^{t.27}$, Yu-han Xie 4 , Xin Chen $^{t.2}$, Wu Qing $^{t.24}$ and Yin-xu Wang $^{t.24}$

		rTMS		C	ontrol			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	Year	IV, Fixed, 95% CI
Khedr 2009	1.36	1.24	14	3.43	0.73	11	9.6%	-1.91 [-2.89, -0.93]	2009	
Khedr 2010	1.76	1.61	11	3.8	1,26	11	10.2%	-1.36 [-2.30, -0.41]	2010	
Kim 2011b	8.47	3.23	10	11.08	4.55	5	7.4%	-0.67 [-1.78, 0.44]	2011	
Kim 2011a	9.09	2.67	10	11.08	4.55	5	7.6%	-0.56 [-1.66, 0.54]	2011	
Park 2013	25.3	9.8	9	21.2	15.6	9	1.0.6%	0.30 [-0.63, 1.23]	2013	
Lim 2014	32.65	11.18	14	46.3	13.8	15	14.9%	-1.05 [-1.84, -0.27]	2014	
Du 2016b	2.37	0.84	13	3.37	0.84	6	8.3%	-1.14 [-2.19, -0.09]	2016	
Du 2016a	2.64	0.83	13	3.37	0.84	6	8.9%	-0.84 (-1.85, 0.18)	2016	
Park 2016a	70.15	16.04	11	83.43	15.3	5	8.0%	0.40 [-0.67, 1.47]	2017	
Park 2016b	44.78	22.02	11	63.43	15.3	5	7.4%	-0.87 [-1.98, 0.24]	2017	-
Tarameshlu 2019	2	0.478	6	2.52	1,91	6	7.0%	-0.34 [-1.49, 0.80]	2019	
Total (95% CI)			122			84	100.0%	-0.76 [-1.07, -0.46]		•
Heterogeneity: Chi ² =	18.10,	f= 10 (P = 0.0	5); P = 4	5%					
Test for overall effect										-2 -1 0 1 2 Favours [experimental] Favours [control]

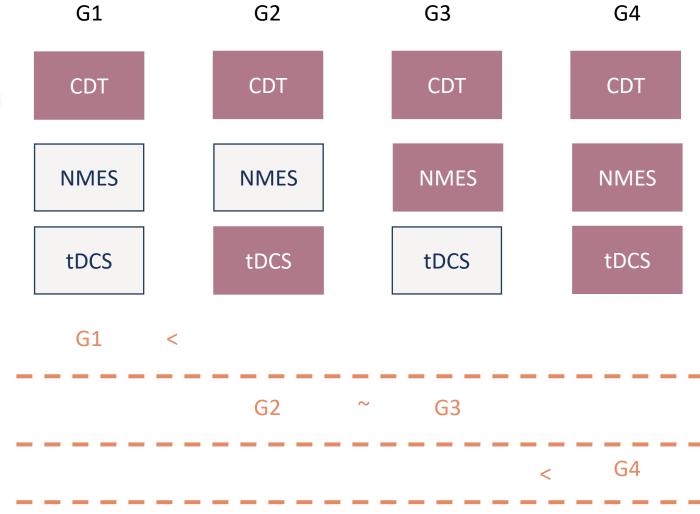
FIGURE 4 | Forest plot for overall swallowing function.

		rTMS		C	ontrol			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
2.3.1 Ipsilesional her	nispher	е								
Khedr 2009	1.36	1.24	14	3.43	0.73	11	9.5%	-1.91 [-2.89, -0.93]	2009	
Kim 2011a	9.09	2.67	10	11.08	4.55	5	8.3%	-0.56 [-1.66, 0.54]	2011	
Du 2016a	2.64	0.83	13	3.37	0.84	6	9.1%	-0.84 (-1.85, 0.18)	2016	-
Park 2016a	70.15	16.04	11	63.43	15.3	. 5	8.6%	0.40 [-0.67, 1.47]	2017	
Subtotal (95% CI)			48			27	35.5%	-0.74 [-1.69, 0.20]		
Heterogeneity: Tau*:	0.65; C	$hi^{a} = 9.9$	7. df =	3 (P = 0	(02); P	= 70%				
Test for overall effect	Z = 1.54	(P=0)	12)							
2.3.2 Contralesional	hemispl	nere								
Kim 2011b	8.47	3.23	10	11.08	4.55	5	8.2%	-0.67 [-1.78, 0.44]	2011	
Park 2013	25.3	9.8	9	21.2	15.6	9	10.0%	0.30 [-0.63, 1.23]	2013	
Lim 2014	32.65	11.18	14	46.3	13.8	15	11.7%	-1.05 (-1.84, -0.27)	2014	-
Du 2016b	2.37	0.84	13	3.37	0.84	6	B.8%	-1.14 (-2.19, -0.09)	2016	
Tarameshlu 2019	2	0.478	6	2.52	1.91	6	7.9%	-0.34 (-1.49, 0.80)		
Subtotal (95% CI)	0.70		52	2.32		41	46.6%	-0.59 [-1.14, -0.05]		-
Heterogeneity: Tau*:	0.13; C	$hi^2 = 6.0$	8, df=	4 (P = 0)	19), P	= 34%				
Test for overall effect	Z= 2.14	(P = 0.	03)							
2.3.3 Bilateral hemis	pheres									
Khedr 2010	1.76	1.61	11	3.8	1.26	11	9.8%	-1.36 [-2.30, -0.41]	2010	
Park 2016b	44.78	22.02	11	63.43	15.3	5	8.2%	-0.87 [-1.98, 0.24]	2017	
Subtotal (95% CI)			22			16	18.0%	-1.15 [-1.87, -0.43]		
Heterogeneity: Tau*:	0.00; C	$hi^2 = 0.4$	3, df =	1 (P = 0	(51); 8	= 0%				
Test for overall effect	Z = 3.13	(P = 0.	002)	eu (600=00)						
Total (95% CI)			122			84	100.0%	-0.75 [-1.16, -0.34]		•
Heterogeneity: Tau*:	0.21, C	hi*= 18	10, df	10 (P	= 0.05	P= 4	5%			1 1 1 1 1
Test for overall effect										-2 -1 0 1 2
Test for subgroup dif				f= 2 (P	± 0.49	0 = F : 0	96			Favours [experimental] Favours [control]

FIGURE 5 | Forest plot for subgroup analysis for overall swallowing function: ipsilesional hemisphere vs. contralesional hemisphere vs. bilateral hemispheres.

	(0)	rTMS		C	ontrol		- 3	Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
2.2.1 High frequency										
Chedr 2009	1.36	1.24	14	3.43	0.73	11	9.5%	-1.91 [-2.89, -0.93]	2009	
Chedr 2010	1.78	1.61	11	3.8	1.26	11	9.8%	-1.36 [-2.30, -0.41]	2010	
(im 2011a	9.09	2.67	10	11.08	4.55	5	8.3%	-0.56 (-1.66, 0.54)	2011	
Park 2013	25.3	9.8	9	21.2	15.6	9	10.0%	0.30 [-0.63, 1.23]	2013	
Du 2016a	2.64	0.83	13	3.37	0.84	6	9.1%	-0.84 [-1.85, 0.18]	2016	-
Park 2016b	44.78	22.02	11	63.43	15.3	5	8.2%	-0.87 [-1.98, 0.24]	2017	-
Park 2016a	70.15	15.04	11	63.43	15.3	5	8.6%	0.40 [-0.67, 1.47]	2017	
Subtotal (95% CI)			79			52	63.4%	-0.70 [-1.33, -0.06]		-
Heterogeneity: Tau*=	0.47; C	hi*= 16	45, df=	6 (P =	0.01);	P = 64	No.			
Test for overall effect	Z = 2.14	(P = 0.	03)							
2.2.2 Low frequency										
(im 2011b	8.47	3.23	1 (27.71)	11.08	11000	- 5	8.2%	-0.67 (-1.78, 0.44)		-
Lim 2014	32.65	11.18	14	46.3		15	11.7%			
Du 2816b	2.37		13	.777.770	0.84	6	8.8%	-1.14 [-2.19, -0.09]		
Farameshlu 2019	2	0.478	- 6	2.52	1.91	6	7.9%	-0.34 [-1.49, 0.80]	2019	_
Subtotal (95% CI)			43			32	36.6%	-0.86 [-1.36, -0.37]		-
Heterogeneity: Tau* =	0.00, C	$hi^2 = 1.4$	0, df =	3(P = 0)	1.71); P	= 0%				
Test for overall effect:	Z = 3.43	P = 0	0006)							
Total (95% CI)			122			84	100.0%	-0.75 [-1.16, -0.34]		•
Heterogeneity: Tau*=	0.21 C	hi² = 18		10 (P	= 0.05					
				140	6.4.91	1000				-2 -1 0 1 2
Test for overall effect:	7 = 3.57	$\Pi = Q_1$	nnna\-							Favours (experimental) Favours (control)

FIGURE 6 | Forest plot for subgroup analysis for overall swallowing function; low frequency transcranial magnetic stimulation vs. high frequency transcranial magnetic stimulation.


Combiner les techniques

> Dysphagia. 2023 May 29. doi: 10.1007/400455-023-10595-w. Online ahead of print.

Effectiveness of Conventional Dysphagia Therapy (CDT), Neuromuscular Electrical Stimulation (NMES), and Transcranial Direct Current Stimulation (tDCS) in Acute Post-Stroke Dysphagia: A Comparative Evaluation

Serkan Bengisu [™], Numan Demir [®], Yakup Krespi [®]

Affiliations + expand PMID: 37247074 DOI: 10.1007/s00455-023-10585-w

Combiner les techniques

Comparative Effectiveness of Combined and Single Neurostimulation and Traditional Dysphagia Therapies for Post-Stroke Dysphagia: A Network Meta-Analysis

Kondwani Joseph Banda, MSN, RNM, Ko-Chiu Wu, PhD, [...], and Kuei-Ru Chou, PhD, RN, FAAN D Wiew all authors and affiliations

Volume 37, Issue 4 https://doi.org/10.1177/15459683231166940

NMES + TDT	tDCS + TDT	rTMS + TDT	NMES	TDT
3.82 (95% CI, 1.62-	3.34 (95% CI, 1.09-	3.32 (95% CI, 1.18-	NMES 2.69 (95% CI, 0.44-4.93)	2.27 (95% CI, 0.12-
6.01)	5.59)	5.47)		4.41)

- Aucune différence entre les traitements
- NMES + TDT majeur différence dans la fonction et réduction temps transport pharyngien
- rTMS + TDT diminution aspiration/inhalation

En conclusion

• Difficile de conclure!

• Très peu de données dans notre population d'intérêt

Populations et critères de jugement très hétérogènes

• Besoin d'identifier les répondeurs et les modalités de traitement les plus efficaces

MERCI DE VOTRE ATTENTION

