L'ÉVALUATION EN RÉANIMATION

Fonction musculaire respiratoire

Daniel Langer Department of Rehabilitation Sciences

Respiratory muscle dysfunction in acute and chronic respiratory failure: how to diagnose and how to treat?

Diego Poddighe ^{[],9}, Marine Van Hollebeke ^{[],9}, Antenor Rodrigues^{2,3}, Greet Hermans^{4,5}, Dries Testelmans ^{[],6}, Alexandros Kalkanis⁶, Beatrix Clerckx^{4,5}, Ghislaine Gayan-Ramirez⁷, Rik Gosselink ^{[],8} and Daniel Langer ^[]

¹KU Leuven, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, Leuven, Belgium. ²Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada. ³Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada. ⁴University Hospitals Leuven, Department of General Internal Medicine, Medical Intensive Care Unit, Leuven, Belgium. ⁵Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium. ⁶University Hospitals Leuven, Department of Respiratory Medicine, Leuven, Belgium. ⁷KU Leuven, Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Leuven, Belgium. ⁸Department of Health and Rehabilitation Sciences – Faculty of Medicine, Stellenbosch University, South Africa. ⁹D. Poddighe and M. Van Hollebeke contributed equally to the manuscript and are shared first authors.

Corresponding author: Daniel Langer (daniel.langer@kuleuven.be)

Shareable abstract (@ERSpublications)

Respiratory muscle dysfunction can be both a cause and consequence of respiratory failure. It is often reversible and should be diagnosed and treated. This review covers available assessment and treatment options in acute and chronic respiratory failure. https://bit.ly/3XZBeVa

Cite this article as: Poddighe D, Van Hollebeke M, Rodrigues A, et al. Respiratory muscle dysfunction in acute and chronic respiratory failure: how to diagnose and how to treat? Eur Respir Rev 2024; 33: 240150 [DOI: 10.1183/16000617.0150-2024].

Coexistence and Impact of Limb Muscle and Diaphragm Weakness at Time of Liberation from Mechanical Ventilation in Medical Intensive Care Unit Patients

Martin Dres^{1,2*}, Bruno-Pierre Dubé^{1,3*}, Julien Mayaux², Julie Delemazure², Danielle Reuter², Laurent Brochard^{4,5}, Thomas Similowski^{1,2}, and Alexandre Demoule^{1,2}

Dres et al. Am. J. Resp. Crit. Care Med. 2017

Techniques to measure respiratory muscle function

DIFFICULT WEANING

Adapted from Moxham J.

RESPIRATORY MUSCLE STRENGTH ASSESSMENT:

MAGNETIC PHRENIC NERVE STIMULATION

Polkey & Moxham.

Chest 2001; 119:926-939.

Cite this article as: Poddighe D, Van Hollebeke M, Rodrigues A, et al. Respiratory muscle dysfunction in acute and chronic respiratory failure: how to diagnose and how to treat? Eur Respir Rev 2024; 33: 240150 [DOI: 10.1183/16000617.0150-2024].

McCool et al. Disorders of the Diaphragm. Clinics in Chest Medicine 2018, 39(2):345-360

Test	Cut-off values for diagnosing weakness	Respiratory muscle group assessed	Level of invasiveness and difficulty	Practical applications	Cost
Pimax	M: 80 cmH ₂ O F: 60 cmH ₂ O	Diaphragm and extradiaphragmatic inspiratory muscles	Not invasive Simple	Assessment of inspiratory muscle function before and after interventions aimed at unloading or improving respiratory muscle function Determination of the external load before starting inspiratory muscle training	Low
SNIP	M: 50 cmH ₂ O F: 45 cmH ₂ O	Diaphragm and extradiaphragmatic inspiratory muscles	Not invasive Simple	Assessment of inspiratory muscle function before and after interventions aimed at unloading or improving respiratory muscle function in patients unable to perform P _{imax} manoeuvre reliably	Low
PEmas	M: 110 cmH ₂ O F: 80 cmH ₂ O	Expiratory muscles	Not invasive Simple	Assessment of expiratory muscle function before and after interventions aimed at unloading or improving respiratory muscle function	Low
PCF	M and F: 270 L·min ⁻¹	Expiratory muscles	Not invasive Simple	Estimation of airway clearance effectiveness in patients with NMDs Estimation of expiratory muscle function in patients with NMDs	Low
DTF	M and F: 20%	Diaphragm	Not invasive Medium	Evaluation of diaphragmatic function in the intensive care unit Confirmation or refinement of the diagnosis of (hemi-) diaphragmatic dysfunction Prediction of weaning outcomes in mechanically ventilated patients	Medium
P _{es,iniff}	M: 55 cmH ₂ O F: 50 cmH ₂ O	Diaphragm and extradiaphragmatic inspiratory muscles	Invasive Simple	Confirmation or refinement of the diagnosis of respiratory muscle weakness when noninvasive assessments provide equivocal results	Medium
P _{di,unitt}	M: 100 cmH ₂ O F: 70 cmH ₂ O	Diaphragm and extradiaphragmatic inspiratory muscles	Invasive Simple	Confirmation or refinement of the diagnosis of respiratory muscle weakness when non-invasive assessments provide equivocal results $P_{\rm ga}/P_{\rm ex}$ ratio can provide information about diaphragm function	Medium
P _{di,twitch}	M and F: 20 cmH ₂ O	Diaphragm	Invasive Complex	Confirmation or refinement of the diagnosis of diaphragmatic weakness Prediction of prolonged mechanical ventilation and mortality in the intensive care unit	High

Cite this article as: Poddighe D, Van Hollebeke M, Rodrigues A, *et al.* Respiratory muscle dysfunction in acute and chronic respiratory failure: how to diagnose and how to treat? *Eur Respir Rev* 2024; 33: 240150 [DOI: 10.1183/16000617.0150-2024].

Archivos de Bronconeumología Available online 29 September 2023 In Press, Journal Pre-proof (7) What's this? 7

UNIVERSIDADE DA CORUÑA

Maximal respiratory pressure reference equations in healthy adults and cut-off points for defining respiratory muscle weakness

<u>Ana Lista-Paz PhD MSc PT</u>^{a1} \land \boxtimes , <u>Daniel Langer PhD MSc PT</u>^{b c 2} \boxtimes , <u>Margarita Barral-Fernández MSc PT</u>^{a 3} \boxtimes , <u>Alejandro Quintela-del-Río PhD</u>^d \boxtimes , <u>Elena Gimeno-Santos PT MSc PhD</u>^{e f g 4} \boxtimes , <u>Ane Arbillaga-Etxarri PhD MSc PT</u>^{h 5} \boxtimes , <u>Rodrigo Torres-Castro MSc PT</u>^{i j 6} \boxtimes , <u>Jordi Vilaró Casamitjana PhD PT</u>^{k 7} \boxtimes , <u>Ana B. Varas de la Fuente PhD MSc PT</u>^l \boxtimes , <u>Cristina Serrano Veguillas MSc PT</u>^{l 8} \boxtimes , <u>Pilar Bravo Cortés MSc PT</u>^{m 9} \boxtimes , <u>Concepción Martín Cortijo PT</u>^{n \bar{n} 10 \boxtimes , <u>Esther García Delgado MSc PT</u>^{n \bar{n} \boxtimes , <u>Beatriz Herrero-Cortina PhD MSc PT</u>^{o p 11} \boxtimes , <u>José Luis Valera RN</u>^q \boxtimes , <u>Guilherme A F Fregonezi PhD MSc PT</u>^r \boxtimes , <u>Marina Francín-Gallego MSc PT</u>^{p 14} \boxtimes , <u>Yolanda Sanesteban Hermida MSc PT</u>^{v a 14a} \boxtimes ... Luz González-Doniz PhD MSc PT^{a 18 #} \boxtimes}}

Colexio Oficial de

isioterapeutas

de Galicia

PROYECTO FINANCIADO POF

ociedad Española

SEPAR

Setting and cohort

14 geographically distributed centers across Spain

Methodology

Measurements

SEPAR protocol in agreement with ATS/ERS guidelines
Flanged mouthpiece
Pressures sustained 3-5 sec
Min 6 acceptable manoeuvres, 3 of them with variability <5%

Female

Results

Reference equations

Plmax=	61.48 + 0.66	* age + 1.55	* BMI - 0.01* age	3 ²

PImax= 98.60 + 1.18 * age + 0.76 * BMI - 0.02 * age²

PEmax= 74.75 + 1.67 * age + 1.75 * BMI – 0.02 * age²

PEmax= 58.11 + 3.71 * age + 2.64 * BMI - 0.04 * age²

Male

Cut-offs

Paz et al. Arch Bronconeumol. 2023

Age

Figure 1. Summary receiver operating characteristic (SROC) curves Poddighe et al. Critical Care (2024) 28:70 https://doi.org/10.1186/s13054-024-04823-4

RESEARCH

Open Access

Check for updates

Accuracy of respiratory muscle assessments to predict weaning outcomes: a systematic review and comparative meta-analysis

Diego Poddighe^{1,2†}, Marine Van Hollebeke^{1,2†}, Yasir Qaiser Choudhary¹, Débora Ribeiro Campos³, Michele R. Schaeffer¹, Jan Y. Verbakel^{4,5}, Greet Hermans^{2,6}, Rik Gosselink^{1,2,7} and Daniel Langer^{1,2*}

Conclusions DTF and DE are superior to PImax and DTF seems to have the highest accuracy among all included respiratory muscle assessments for predicting weaning success. Further studies aiming at identifying the optimal threshold of DTF to predict weaning success are warranted.

Critical Care

Figure 2: Published articles per assessment method over time

Investigated assessments of interest according to the decade of publication

Results

Assessment	Sensitivity at 80% specificity	95%CI
Pimax	63%	47-77%
DE	75%	67-82%
DTF	77%	61-87%
P0.1	74%	40-93%
Tdi _{ei}	69%	13-97%
Tdl _{es}	37%	13-70%

Assessment	Sensitivity at 80% specificity	95%CI
Pimax	61%	44-75%
DE	76%	64-85%
DTF	78%	63-88%

Assessment	Sensitivity at 80% specificity	95%CI
DE	79%	68-87%
DTF	88%	78-93%

Diaphragm thickening fraction (tidal)

- High frequency linear transducer, M-mode
- Only in spontaneously breathing patients

Diaphragmatic thickening fraction

Intensive Care Med https://doi.org/10.1007/s00134-024-07688-x

Home > Intensive Care Medicine > Article

How I perform diaphragmatic ultrasound in the intensive care unit

Editorial | Published: 29 October 2024

(2024) Cite this article

Download PDF 👱

Greet Hermans M, Alexandre Demoule & Leo Heunks

 \bigcirc 6288 Accesses ↔ 62 Altmetric Explore all metrics →

Intensive Care Medicine

Aims and scope \rightarrow

Submit manuscript \rightarrow

Use our pre-submission checklist →

Avoid common mistakes on your manuscript.

- Position the M line perpendicular to the diaphragm movement, focusing on the area with the greatest displacement
- Adjust sweep speed to obtain at least 3 respiratory cycles within 1 frame
- Adjust sweep speed to obtain at least 3 respiratory cycles within 1 frame

livér diaphragm	pleural line rib DTeer fibrous layer peritoneal line DTpi 1 L DTee
 Adjust depth to optimally capture excursion Adjust gain to optimize contrast with surrounding structures Adjust focus is used to optimize image quality Position the M line perpendicular to the diaphragm movement, focusing on the area with the greatest displacement Adjust sweep speed to obtain at least 3 respiratory cycles within 1 frame 	 Adjust depth center the diaphragm Adjust gain to optimize contrast with surrounding structures Adjust focus is used to optimize image quality Position the M line perpendicular to the diaphragm Adjust sweep speed to obtain at least 3 respiratory cycles within 1 frame
 4. Measurements Measure DE during tidal breathing in M-mode Place the markers at the lowest (foot) and the highest point (apex) of the inspiratory slope and measure the distance between both on the vertical axis 	 Measure thickness at end inspiration (DTpi) and end-expiration (DTee) of the same respiratory cycle in the B mode or M mode Place the calipers perpendicular to the fiber direction closest at the internal margin of the pleural and peritoneal lining without including them Calculate DTF as (DTpi-DTee)*100/(DTee) To achieve representative results, obtain at least 3 measurements with a difference of <10%
5. Normal values in healthy individuals ¹⁴ DE: seated, tidal breathing, end-expiration (values as mean±SD) right: male: 2.0±0.5 cm; female: 1.9±0.5 cm left: male: 2.2±0.6 cm; female: 1.9±0.5 cm	 Thickness: seated, tiddal breathing, end-expiration (values as mean±SD) right: male: 2.1±0.4 mm; female: 1.9±0.4 mm left: male: 2.0±0.4 mm; female: 1.7±0.3 mm DTF: seated, tidal breathing, end-expiration (values as mean±SD) right: male: 32±15%; female: 35±16% left: male: 30±14%; female: 33±15%
6. Relevant thresholds/related to outcome DE: DE <10-15 mm during tidal breathing: diaphragm dysfunction ⁴	DTF: DTF _{max} <20%: diaphragm dysfunction ⁴ DTF <25-33%: predicts weaning failure ⁹ DTF <20%: predicts NIV failure ¹⁰
are not required for other situations, such as detection of asynchrony. Abbreviations: DTpi: diaphragm thickness at peak-inspiration; DTee: diaphragm thick thickening fraction during maximal inspiratory maneuver; DE: diaphragm excursion. Parts of this figure were produced with Biorender	ckness at end-expiration; DTF: diaphragm thickening fractio; DTF _{max} : diaphragm

CONCEPTIONAL MODEL OF RESPIRATORY MUSCLE PROTECTIVE MECHANICAL VENTILATION

Schreiber et al. Crit. Care Clin. 2018

Thickening fraction 15-30% = shortest duration of mechanical ventilation in comparison with lower or higher thickening fraction values

TFdi < 10% = Overassist TFdi > 40% = Underassist

Goligher et al. AJRCCM 2018

Diaphragm thickness in mechanically ventilated patients

Goligher et al. AJRCCM 2015; 192: 1080

Fig. 1 Electrode positioning for bilateral parasternal (sEMG_{pc}) and diaphragm (sEMG_D) configuration, redrawn from [107]

Jonkman et al. Critical Care (2024) 28:2 https://doi.org/10.1186/s13054-023-04779-x Critical Care

REVIEW

Open Access

Analysis and applications of respiratory surface EMG: report of a round table meeting

A. H. Jonkman¹, R. S. P. Warnaar², W. Baccinelli³, N. M. Carbon⁴, R. F. D'Cruz⁵, J. Doorduin⁶, J. L. M. van Doorn⁶, J. Elshof⁷, L. Estrada-Petrocelli⁸, J. Graßhoff⁹, L. M. A. Heunks¹⁰, A. A. Koopman¹¹, D. Langer¹², C. M. Moore³, J. M. Nunez Silveira¹³, E. Petersen¹⁴, D. Poddighe¹², M. Ramsay⁵, A. Rodrigues¹⁵, L. H. Roesthuis¹⁰, A. Rossel¹⁶, A. Torres¹⁷, M. L. Duiverman⁷ and E. Oppersma^{2*}

RESEARCH

Recruitment pattern of the diaphragm and extradiaphragmatic inspiratory muscles in response to different levels of pressure support

L. H. Roesthuis¹, J. G. van der Hoeven¹, H. W. H. van Hees², W.-J. M. Schellekens³, J. Doorduin⁴ and L. M. A. Heunks^{5*}⁶

Contents lists available at ScienceDirect

Australian Critical Care

journal homepage: www.elsevier.com/locate/aucc

Brief research report

Inspiratory effort and respiratory muscle activation during different breathing conditions in patients with weaning difficulties: An exploratory study

Diego Poddighe, PT, MSc ^{a, b, *}, Marine Van Hollebeke, PT, PhD ^{a, b}, Beatrix Clerckx, PT, MSc ^b, Luc Janssens, MSc ^c, Geert Molenberghs, PhD ^{d, e}, Lisa Van Dyck, MD, PhD ^b, Jan Muller, MD ^b, Jan Gunst, MD, PhD ^{b, f}, Philippe Meersseman, MD, PhD ^g, Marijke Peetermans, MD, PhD ^g, Greet Hermans, MD, PhD ^{f, g}, Rik Gosselink, PT, PhD ^{a, b}, Daniel Langer, PT, PhD ^{a, b}

^a KU Leuven, Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, B-3000, Leuven, Belgium; ^b University Hospitals Leuven, Department of Intensive Care Medicine, Leuven, Belgium; ^c KU Leuven, Faculty of Engineering Technology, Leuven, Belgium; ^d I-BioStat, Department of Public Health and Primary Care, KU Leuven, B-3000, Leuven, Belgium; ^e I-BioStat, Hasselt University, B-3500, Hasselt, Belgium; ^f Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; ^g University Hospitals Leuven, Department of General Internal Medicine, Medical Intensive Care Unit, Leuven, Belgium

Respiratory surface EMG during respiratory muscle loading

VENTILATORY PUMP CAPACITY

PULMONARY FUNCTION (FVC) STRENGTH (P_Imax, P_Emax)

Inspiratory muscle strength (% pred)

De Troyer et al. Thorax 1980, 35: 603- 610.

Assessment of pulmonary function

Assessment of pulmonary function

ASSESSMENT OF RESPIRATORY MUSCLE STRENGTH

- Presence of inspiratory muscle weakness ?
- Guidance for inspiratory muscle loading !

Time (sec)

Marini et al. J. Crit. Care 1: 32-38, 1986.

Assessment of respiratory muscle strength

Maximal Inspiratory Pressure

UNSUSTAINABLE! Even with Ti/Ttot 0.2 TTI would be 0.16

Vassilakopoulos et al. Am J Respir Crit Care Med. 1998; 158:378-385.

Clinical Investigations

Respiration

Respiration 2024;103:182–192 DOI: 10.1159/000536589 Received: July 19, 2023 Accepted: January 28, 2024 Published online: February 7, 2024

Inspiratory Muscle Dysfunction Mediates and Predicts a Disease Continuum of Hypercapnic Failure in Chronic Obstructive Pulmonary Disease

Jens Spiesshoefer^{a, b} Simon D. Herkenrath^{c, d} Marcel Treml^c Anja Pietzke-Calcagnile^c Lars Hagmeyer^{c, d} Binaya Regmi^a Sandhya Matthes^c Peter Young^e Matthias Boentert^{f, g} Winfried J. Randerath^{c, d} Plmax: clinical relevance

• Assessment of respiratory muscle function encompassed:

- body plethysmography
- maximum inspiratory pressure (MIP)
- diaphragm ultrasound
- transdiaphragmatic pressure recordings following cervical magnetic stimulation of the phrenic nerves (twPdi) and a maximum sniff manoeuvre (Sniff Pdi).
- Only MIP reflected the extent of hypercapnia across all three stages.
- MIP values below -48 cmH2O predicted nocturnal hypercapnia (area under the curve = 0.733, p = 0.052).

Green and Laroche, Resp Med, 1990, 1373 - 1387.

scientific reports

Check for updates

OPEN Respiratory muscle strength can improve the prognostic assessment in COPD

Plmax: clinical relevance

Rebeca Nunes Silva¹, Cássia da Luz Goulart¹, Claudio R. de Oliveira², Renata Gonçalves Mendes¹, Ross Arena³, Jonathan Myers⁴ & Audrey Borghi-Silva^{1⊠}

- Patients severely affected by COPD presenting MIP ≤ 55 and/or MEP ≤ 80 cmH2O are at increased risk of mortality.
- MIP and MEP substantially improve the mortality risk assessment when combined with FEV1, VO2peak and 6MWD in patients with COPD.

Take Home Messages

- Respiratory muscle dysfunction can be cause and consequence of respiratory failure.
- It is often reversible and should be diagnosed and treated.
- Evaluating respiratory muscle function is valuable for diagnosing, phenotyping, setting up and assessing treatment efficacy in patients with ARF and CRF.
- EMG and MUS play an increasingly important role alongside established invasive and noninvasive pressure assessment techniques.
- While MUS is already frequently applied in clinical practice, EMG remains currently underused.
- Both are useful tools for quantifying respiratory muscle effort and can be useful for titrating ventilatory support, optimising muscle stimulation during training interventions and guiding treatment decisions.

THANK YOU FOR YOUR ATTENTION!

If you have any questions please share your thoughts and ideas!

daniel.langer@kuleuven.be