

Hypoxémie, Hypercapnie, Lequel est le plus délétère ?

Session Kinésithérapeute

Nicolas Péron 09/06/2021 MIR HEGP

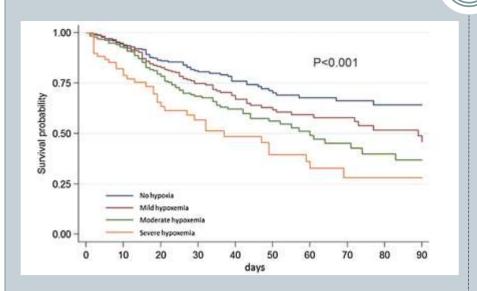
Orateur: Nicolas PERON, Paris

☑ Je n'ai pas de lien d'intérêt potentiel à déclarer

Quelques définitions

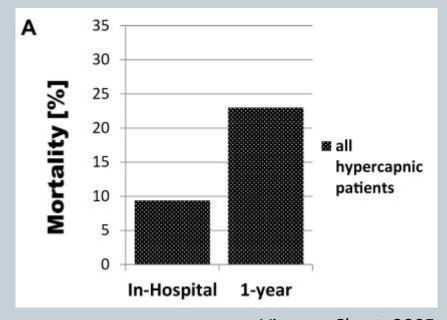
- Hypoxémie : PaO₂ < 70 mmHg
 - Définitions variables selon les auteurs
 - Profonde si < 60 mmHg
- Hypoxie : Diminution de l'oxygénation tissulaire
 - Conséquence de l'hypoxémie
 - Autres causes ?

Quelques définitions


- Insuffisance respiratoire aigüe :
 - Altération aigüe de l'hématose
- OU
- \times Hypoxémie (PaO₂ < 60 mmHg)
- \times Hypercapnie (PaCO₂ > 42 mmHg)

Type I

Type II


- Insuffisance respiratoire chronique :
 - Hypoxémie (< 70 mmHg)
 - Au repos, à l'état stable
 - Hypercapnique ou non
 - IRC grave si PaO₂ < 60 mmHg</p>

Généralités

	All	PaO ₂ <60 mmHg	PaO₂≥60 mmHg	p	
6MWD	400 [305: 470] 4	305 [266; 393]*	410 [320; 480]	<0.0001	
3-year mortality	79 (9%)	20 (14%)	59 (BS)	0.026	

Variables	Total	Paco _z ≥ 48 om Hg	p Value	Pocco _s ≤ 48 um Hg	Age 570 yr	p Value	Agr. ≥ 70 yr	%IBW ≤ 90%	P Value	% IBW ≥ 90%
Patients	73	54	NS.	19	55	NS	15	22	NS	- 51
Age, sr	65 ± 8	66 士 6	NS:	64 ± 5	82 ± 5	NS.	74 ± 4	66 ± 6	NS	65 ± 8
WIBW	106 ± 26	108 ± 26	NS.	100 ± 27	108 ± 27	NS.	100 ± 24	78 ± 9	0.001	117 ± 22
BMI	23 ± 6	22 ± 6	NS.	24 ± 7	23 ± 7	NS.	22 ± 5	17 ± 3	0.001	25 ± 6
Pao, mm Hg	54 ± 8	53 ± 4	0.044	60 ± 7	52 ± 6	NS.	39 ± 6	53 ± 4	NS	54 ± 6
Paco, mm Hg	52 ± 10	56 ± 7	0.0049	38 ± 4	51 ± 10	NS:	53 ± 10	52 ± 12	NS.	52 ± 9
pH	7.39 ± 0.03	7.39 ± 0.03	NS	7.40 ± 0.02	7.39 ± 0.03	NS	7.40 ± 0.04	7.40 ± 0.04	NS	7.39 ± 0.03
Tracheotomized	32	23.5	NS.	21	14	0.008	50	39	0.008	15
Mortality within 3 mol-	8 (10.9)	6 (11.1)	N5	2 (10.3)	3-(0)	NS	3 (17)	7 (31.8)	0.019	1 (2)
LTOT	69	79	0.044	53	71	NS.	66	70	NS:	70
Home MV	10.5	16	0.044	5	12	NS	- 19	13	0.039	10.5

SRLF trial group, Ann Intensive care, 2018

Vitacaa, Chest, 2005

Zysman, Int J COPD, 2021

Vonderbank, Emergency medicine, 2020

Hypoxémie aigüe et chronique

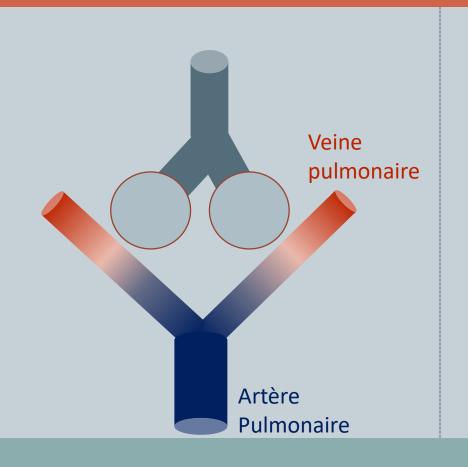
Hypercapnie aigüe et chronique

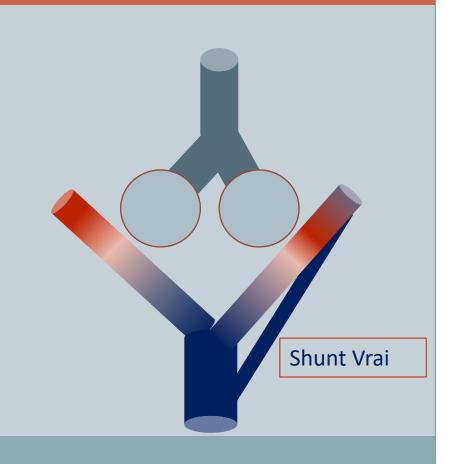
Cas cliniques

Conclusion

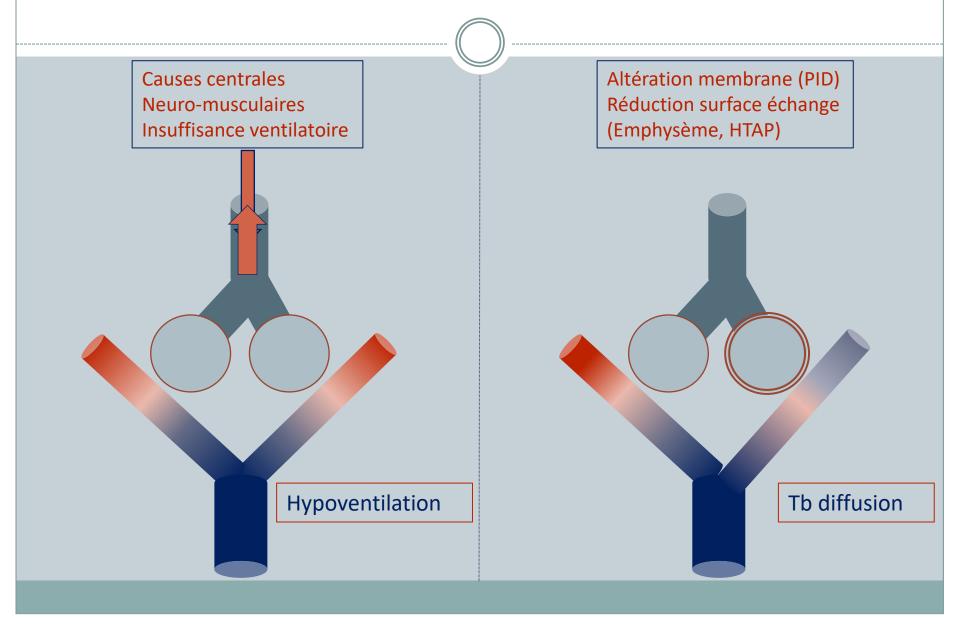
Hypoxémie aigüe et chronique

Hypercapnie aigüe et chronique

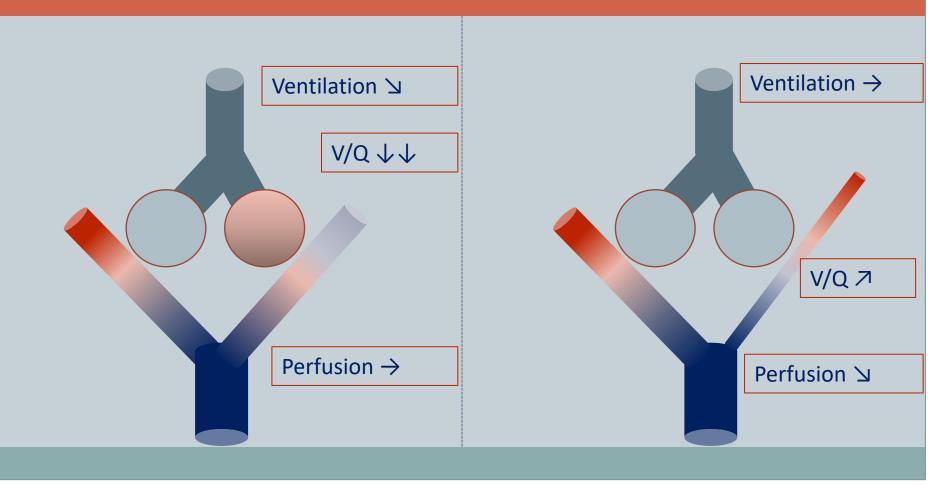

Cas cliniques


Conclusion

Hypoxémie aigüe


Mécanismes

Multiples, complexes et intriqués le plus souvent

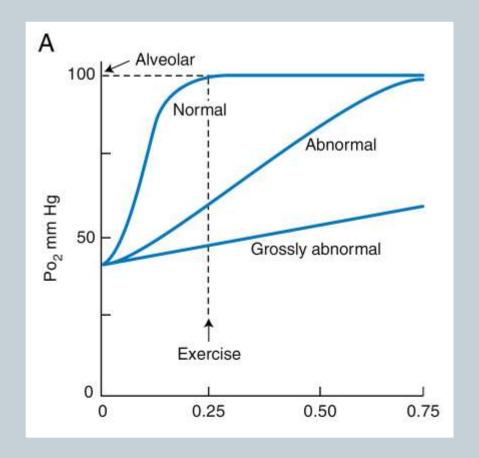

Mécanismes


Altération Ratio V/Q

Effet espace mort

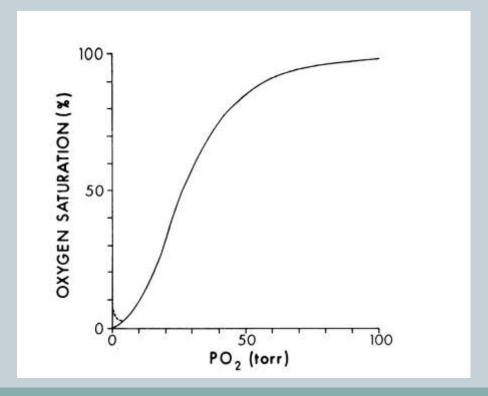
Altération Ratio V/Q

Mécanismes de l'hypoxémie

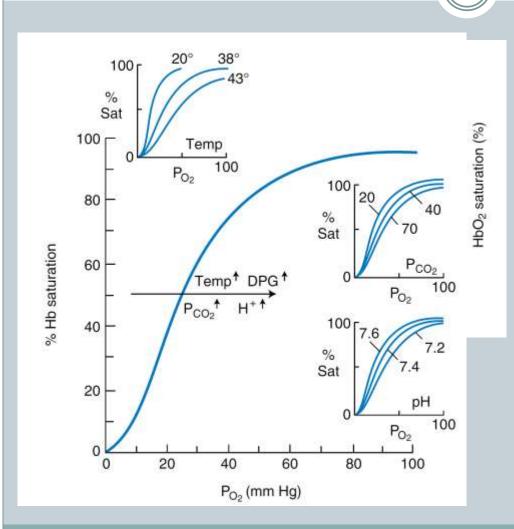

	PA _{O2}	PA _{CO2}	Pa ₀₂	Pa _{co2}	Ca _{O2}	Sa _{O2}	Correction par O ₂
Hypoventilation	\	↑	\	↑	\	\	0
Tb Diffusion	N	N	\	N	\	\	0
Shunt	N	N	\	N	\	\	N
Interaction V/Q	+/-	+/-	\	+/-	\	\	0
Anemia	N	N	N	N	\	N	0
Intoxication CO	N	N	N	N	\	↓ ou N	0

A l'effort

Augmentation VO₂ et VCO₂


Tps passage capillaire plus court

SI VO2 insuffisante, production d'énergie anaérobie



Corrélation saturation/PaO₂

PaO ₂ (mmHg)	30	37,5	45	52,5	60	67,5	82,5	104	>127
SaO ₂ (%)	57,4	71,4	80,7	86,8	90,7	93,2	96,2	98,2	>99

Courbe de dissociation de l'Hb

Contenu artériel en O₂:

- Hemoglobine
- PaO₂
- SpO₂

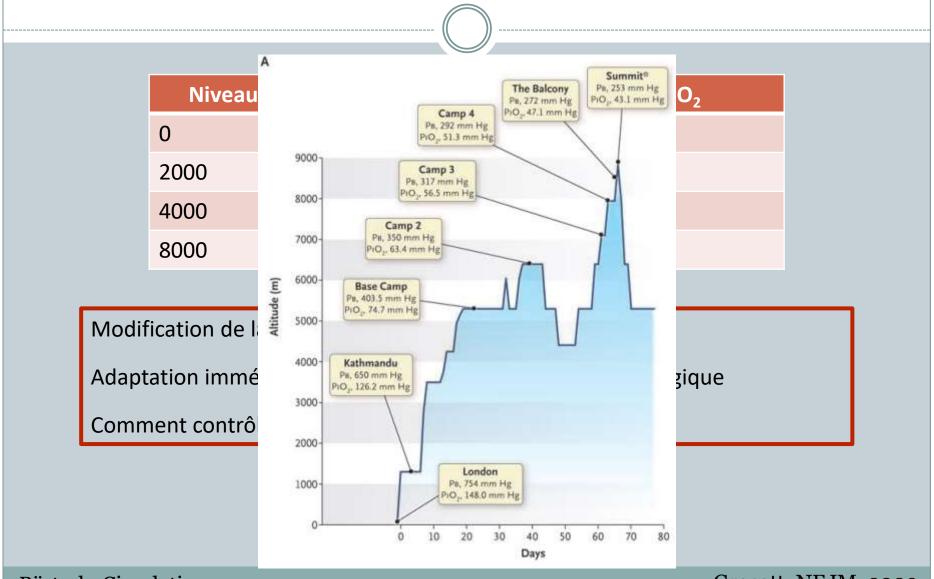
 $CaO_2 = (Hb \times 1,34 \times SaO_2) + (0,03 \times PaO_2)$

Facteurs influençant la courbe :

- T°
- PaCO2
- H+
- 2,3-DPG

« happy hypoxemia »

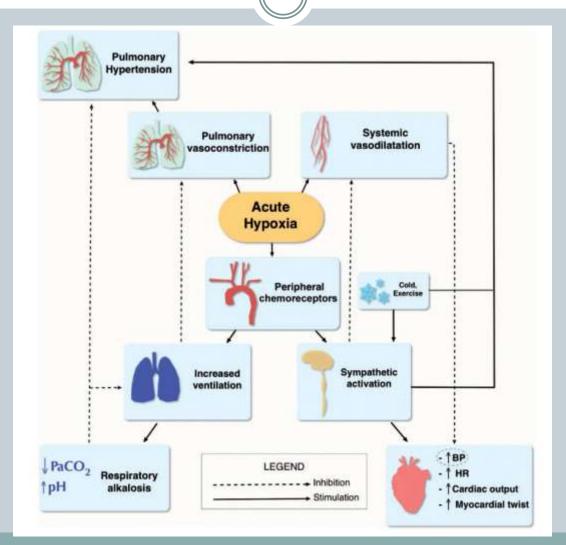
COVID-19 mais beaucoup d'autres exemples...


Mécanismes de la dyspnée versus mécanismes de l'hypoxémie

Hypoxémie : Conséquences immédiates ?

Rôle de la PCO2

D'autres exemples d'hypoxémie heureuses..?


En altitude

Bärtsch, Circulation, 2007

Grocott, NEJM, 2009

Conséquences de l'hypoxémie

Lors d'une pathologie aigüe

- Nentilation minute
- Nasoconstriction pulmonaire

- Nasodilation coronaire
- Z Vasocontriction
- Tachycardie
- Débit cardiaque

Hypoxémie

- 2,3 DPG
- CO2

- Débit cérébral
- Activation SRAA

Risques immédiats

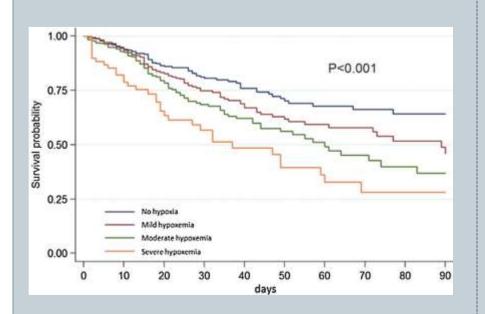
Hypertension pulmonaire

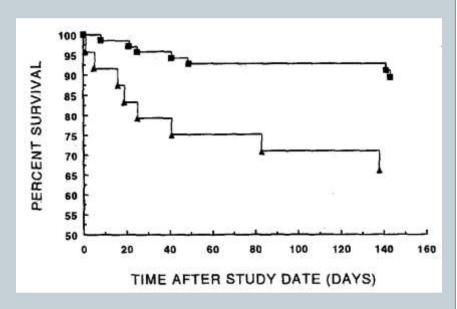

- Ischémie coronaire
- Ischémie périphérique
- Hypotension
- Bradycardie, arythmies

Hypoxémie

Acidose lactique

- Confusion
- Coma
- Nécrose tubulaire aigüe
- EPO


SDRA



- Mécanismes multiples
- Pronostic variable mais mortalité élevée
- Hypoxémie comme principal critères diagnostiques et sévérité

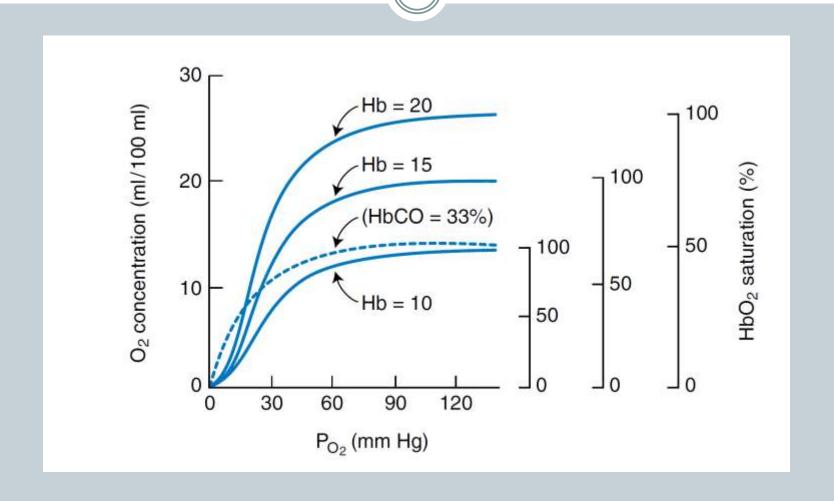
Pronostic

30 à 50% des ACR intra-hospitalier

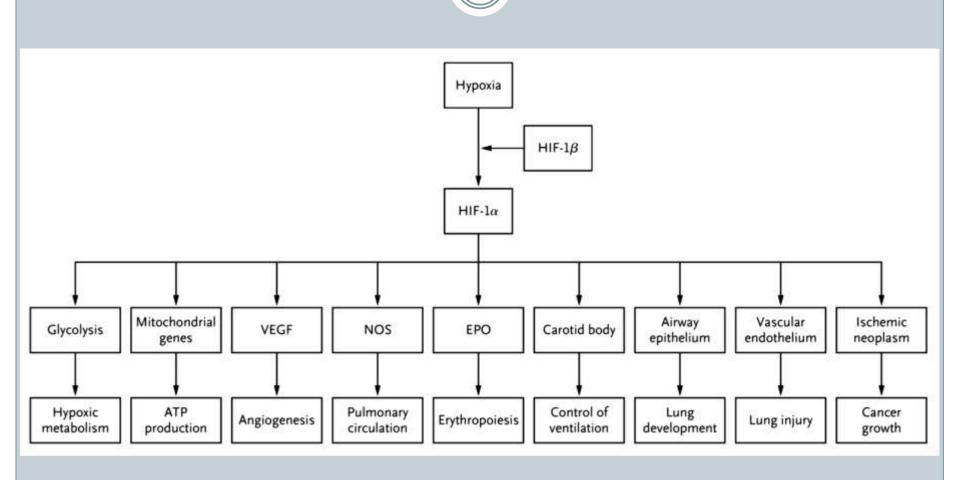
Hypoxémie chronique

Adaptation chronique

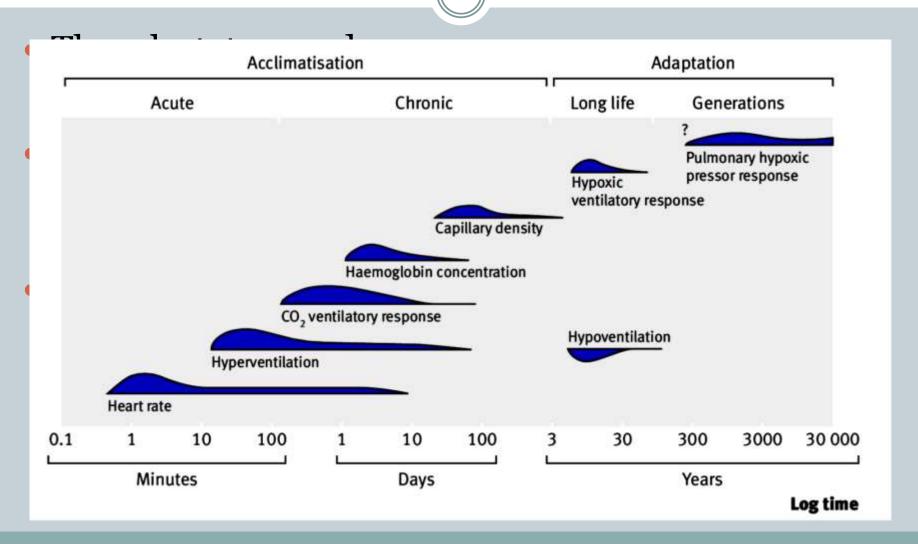
- Hypertension artérielle pulmonaire
- Remodelage vasculaire
- Néo-vascularisation

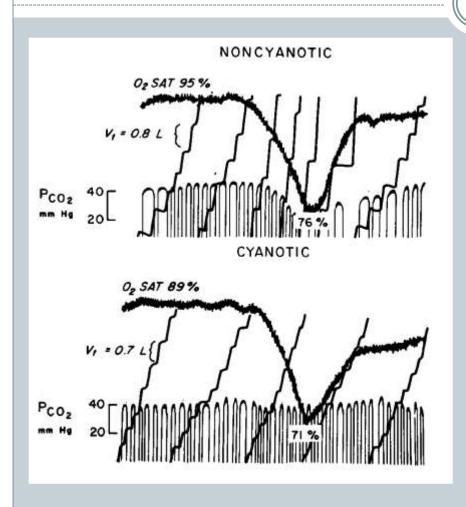

- Ischémie coronaire
- Ischémie périphérique
- Hypotension
- Bradycardie, arythmies

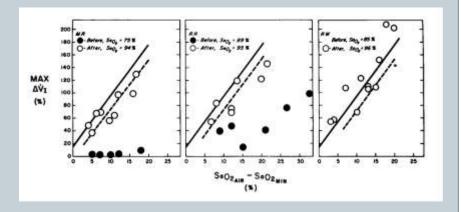
Hypoxémie


- Polyglobulie
- EPO

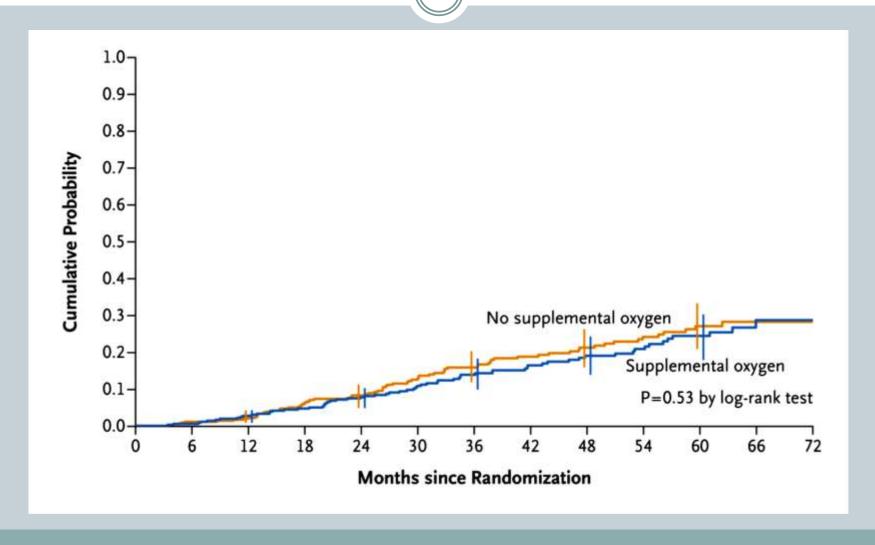
Rétention hydro-sodée


Adaptation


En altitude

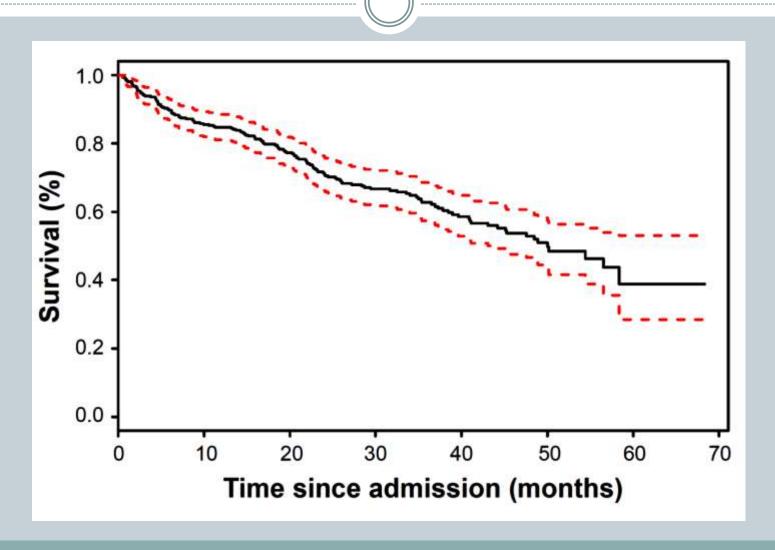


En altitude



Exemple des cardiopathies cyanogènes

Survie



Survie

	All	PaO ₂ <60 mmHg	PaO₂≥60 mmHg	Þ
n, %	887	146 (16%)	741 (84%)	
Age, yr	64 [57; 72]	65 [58; 74]	64 [57; 72]	NS
Sex, M/F	653/234	110/36	543/198	NS
paO _{2,} mmHg	71 [63; 79]	56 [52: 59]	73 [65; 80]	<0.0001
paCO₂, mmHg	40 [37; 43]	44 [40: 50]	39 [36: 43]	<0.0001
pН	7.42 [7.40; 7.44]	7.42 [7.40; 7.45]	7.42 [7.40; 7.44]	0.6614
FEV ₁ , % predicted	48 [33; 63]	35 [25; 47]	51 [36; 65]	<0.0001
FVC, % predicted	82 [68; 98]	71 [58; 92]	83 [69; 99]	<0.0001
RV, % predicted	166 [131; 209]	186 [143; 229]	161 [131; 205]	0.0063
TLC, % predicted	113 [100; 129]	117 [101; 131]	113 [100; 128]	NS
RV/TLC, %	57 [48: 65]	64 [54; 69]	56 [48: 63]	<0.0001
DLCO, mL/min/mmHg	13.8 [9.2; 18.9]*	8.0 [5.6; 10.9] ^b	14.8 [11.0; 19.7] ^c	< 0.0001
SGRQ	37 [23: 52]	57 [42-68]	45 [32: 58]	<0.0001
6MWD	400 [305; 470] ^d	305 [266; 393]"	410 [320; 480] ^f	<0.0001
3-year mortality	79 (9%)	20 (14%)	59 (8%)	0.026

Lors d'une pathologie aigüe

Campbell summarised this issue eloquently in 1967 when he said "Better a year at a PaO_2 of 50 mm Hg (6.7 kPa) than an hour at a PaO_2 of 20 mm Hg (2.7 kPa)".

Hypoxémie aigüe et chronique

Hypercapnie aigüe et chronique

Cas cliniques

Conclusion

Hypercapnie aigüe

Lors d'une pathologie aigüe

Hypoventilation centrale

- Toxiques
- Causes neurologiques

Epuisement respiratoire

- Asthme aigu grave
- Neuro-musculaire

Exacerbation

- BPCO post-tabagique
- IRC restrictive
- Sd obésité-hypoventilation

En réanimation

- SDRA
- Post-extubation

Réversibilité

Table 1-Arterial Blood Gas Data during Successful Resuscitation from Severe Hypercapnia

Time	pH	PaCO ₂ , mm Hg*	PaO ₂ , mm Hg*	HCO3-, mEq/L	Base excess, mEq/L
Admission	6.60	375	40	34	-16
5 min of mask ventilation	6.91	151	244	29	-9
25 min of mechanical ventilation	7.08	68	56	25	-7
90 min of mechanical ventilation	7.19	58	65	21	-5

^{*}Conversion of traditional units to SI: 1 mm Hg=0.133 kPa.

Des effets bénéfiques

Table 1. – Immuno-modulatory and protective effects of acidosis

Inhibition of xanthine oxidase and oxygen radical formation Reduced neutrophil respiratory burst

Reduced leucocyte and vascular endothelial cell cytokine release

TNF-α

IL-8

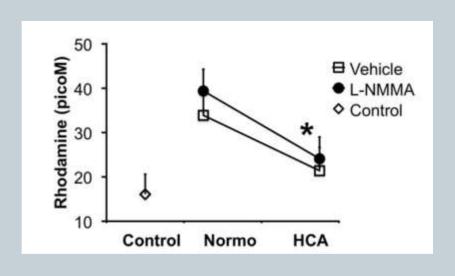
IL-6

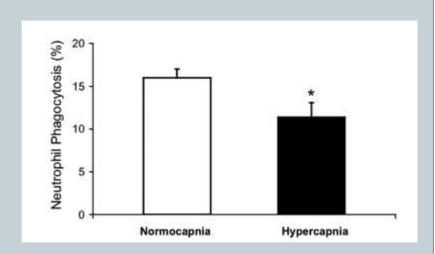
Inhibition of neutrophil chemotaxis

Changes in cellular adhesion molecule expression

Inhibition of NO synthases

Impairment of phagocytosis


Decreased antibody synthesis


Increased complement activation

Effets discordants?

Hypercapnic Acidosis Reduces Oxidative Reactions in Endotoxin-induced Lung Injury

Alistair D. Nichol, F.C.I.C.M., Ph.D.,* Donall F. O'Cronin, F.C.A.R.C.S.I., M.D.,† Finola Naughton, F.C.A.R.C.S.I.,# Natalie Hopkins, Ph.D.,‡ John Boylan, F.C.A.R.C.S.I.,§ Paul McLoughlin, M.R.C.P., Ph.D.||

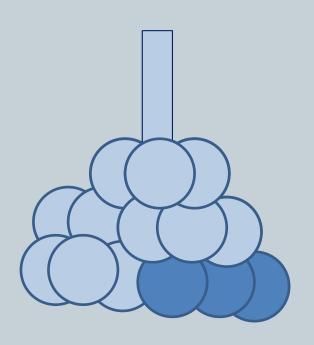
Quels effets?

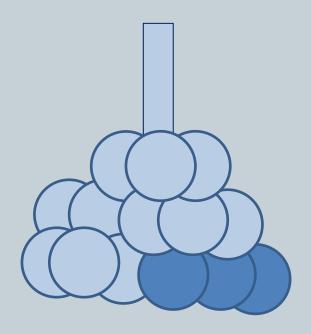
Neurologiques

- Vasodilatation cérébrale
- Stimulation sympathique

Métabolique

- \(\) Consommation O₂
- Z Cétose / acide lactique


Cardiovasculaire


- ¬ FC, PA, contractilité
- A Retour veineux

Sanguin

- → Ht, Hb
- Affinité Hb/O₂
- ▶ Y EPO

Une histoire du SDRA

Une histoire du SDRA

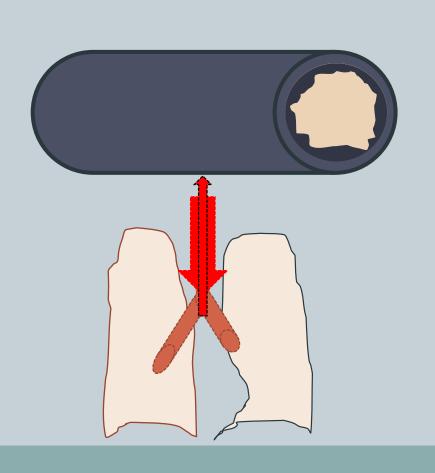
Table 3

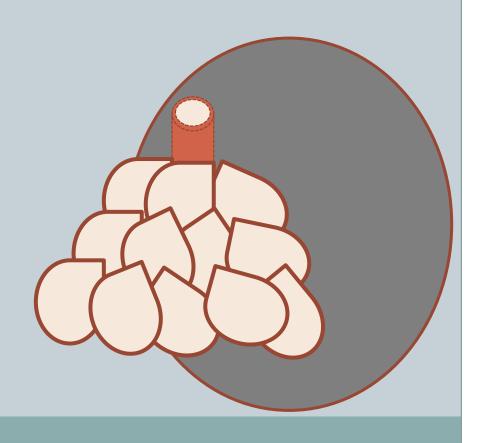
Descriptive analysis of the complications and clinical outcomes of patients over the course of the period of mecha in the course of the period of the peri

p	Severe hypercapnia	Mortality in the intensive care unit			p value	
is		N	Odds ratio	95% CI		
ila lic	Crude	1899	1.68	1.35-2.10	0.000	
1	Adjusted	1137	2.40	1.67-3.46	0.000	
ti at	After matching	342	1.58	1.04-2.41	0.032	
ati						
gth or	ICO stay (uays)	14 (0, 41)		14 (0, 4)	· /	v.
gth of	hospital stay (days)	19 (9, 35)		20 (11, 3	5)	0.
morta	ality	270 (62.5%)	{	729 (49.6	%)	<0.

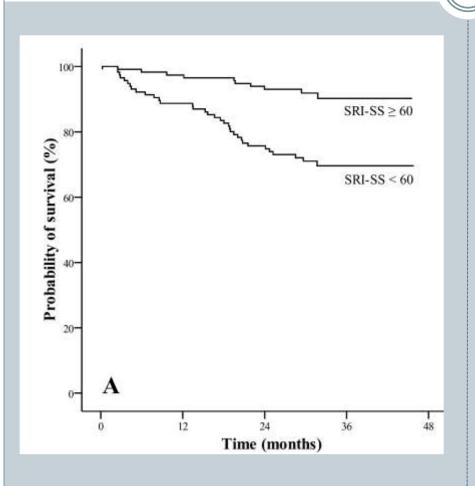
Exacerbation hypercapnique

mIPAP-72 h (cm H_2O)	17.5 ± 4.4
pH-t1	7.30 ± 0.06
pH-t2	7.33 ± 0.07
pCO ₂ -t1 (mmHg)	75.3 ± 16.8
pCO ₂ -t2 (mmHg)	71.9 ± 14.7
dNIV-24 h (hours)	13.8 ± 5.5
dNIV-48 h (hours)	23.2 ± 10.3
dNIV-72 h (hours)	30.3 ± 14.5
Days of NIV (days)	5.1 ± 3.4
Length of stay (days)	8.6 ± 6.2
NIV failure	11 (12.4%)
Mortality	10 (11.2%)


Hypercapnie chronique


Pourquoi?

- Insuffisance respiratoire chronique
 - Obstructive
 - Restrictive
 - Neuro-musculaire


- Augmentation du travail respiratoire
- Déficit (neuro)musculaire

Physiopathologie

Pronostic

 Pronostic plus sombre dans la BPCO

Dénutrition

QdV

VNI

Après une exacerbation

Après une exacerbation hypercapnique

Mortalité aigüe : 10%

• 1 an: 43%

Hypoxémie aigüe et chronique

Hypercapnie aigüe et chronique

Cas cliniques

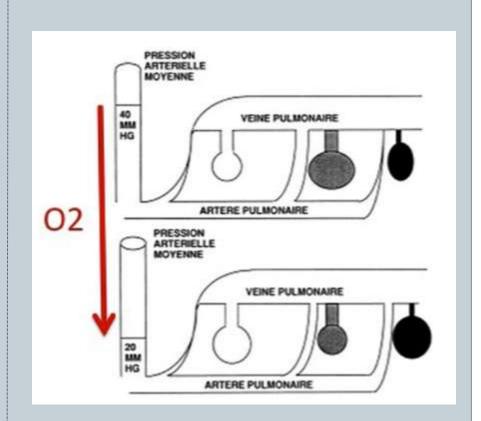
Conclusion

 H, 60 ans, BPCO posttabagique

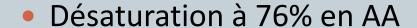
•	Exacerbation de BPCO
	post-tabagique

SpO₂: 91% sous 3L d'O₂

Effort : Désaturation à 81%


 Légère majoration dyspnée sans signe de lutte

рН	7,35
PaO ₂	65
PaCO ₂	54
HCO ₃ -	32


• Quelle conduite à tenir ?

Hyperoxie

- Mécanismes d'adaptation:
 - Effet Haldane ?
 - ☑ Ventilation?
 - Levée de vasoconstriction hypoxique

- F, 65 ans
- EP traitée depuis 4 jours

- Mise sous 15L d'O2 : 82%
- FR: 12/min
- Pas de dyspnée, pas de signe de lutte

рН	7,43
PaO ₂	41
PaCO ₂	30
HCO ₃ -	26

- Quel diagnostic évoquer ?
- Quel mécanisme ?
- Quelle CAT ?

- H, 71 ans, BPCO
- Première exacerbation
- Hypercapnie à 58 mmHg
- Dyspnée au moindre effort
 - o (EVA: 9/10)
 - Arrêt après qqs mètres

рН	7,32
PaO ₂	69
PaCO ₂	64
HCO ₃ -	28

- Quel mode de réhabilitation ?
- Quelle CAT ?

- F, 48 ans, pneumonie à pneumocoque
- SpO_2 : 92 % sous OHD 60L/min FiO_2 60% au fauteuil

рН	7,48
PaO ₂	52
PaCO ₂	28
HCO ₃ -	20
Lactate	3,1

H, 35 ans, SDRA COVID19

- IOT depuis 48h
- FiO2: 90%
- Bradycardie aux aspirations
- Mono-défaillance respiratoire

рН	7,30
PaO ₂	61
PaCO ₂	74
HCO ₃ -	30
Lactate	1,4

- Que faire pour améliorer
- L'hypoxémie ?
- L'hypercapnie ?
- Les deux?

Hypoxémie aigüe et chronique

Hypercapnie aigüe et chronique

Cas cliniques

Conclusion

Les deux sont délétères

Court terme :

 Facteurs associés à la mortalité hospitalière

- A surveiller
- A contrôler

Long terme :

- Adaptation physiologique
- Mais pathologique

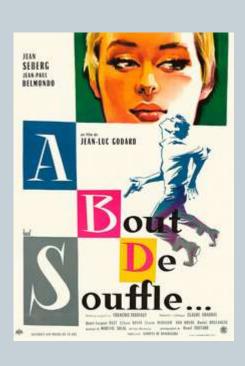
- Pathologies aigües sur chroniques
- Facteurs associés (dénutrition, sarcopénie)

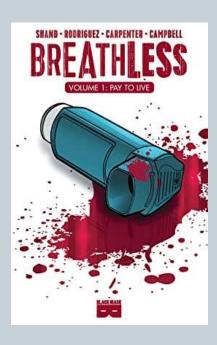
Effort en situation aigüe

- Hypoxémie :
 - Vigilance en pathologie aigüe
 - Progressif
 - Selon tolérance respiratoire
 - Surveillance SpO₂
 - Signes cliniques de gravité

- Hypercapnie
 - Peu de risque
 - Renforcement musculaire

La réponse ?


Hypoxémie aigüe


Hypercapnie chronique

- Risque élevé de mortalité
- Aggravation rapide
- ACR intra-Hospitalier

- Mortalité
- Facteurs aggravants
- Après une exacerbation

Merci de votre attention

